Karakterisasi dan Uji Stabilitas Digestif Nanoemulsi β-Karoten yang Dibuat dengan Metode Emulsifikasi Spontan

https://doi.org/10.22146/agritech.29087

Setyaningrum Ariviani(1*), Windi Atmaka(2), Sri Raharjo(3)

(1) Program studi Ilmu dan Teknologi Pangan, Fakultas Pertanian, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36A, Kentingan, Surakarta 57126
(2) Program studi Ilmu dan Teknologi Pangan, Fakultas Pertanian, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36A, Kentingan, Surakarta 57126
(3) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(*) Corresponding Author

Abstract


β-Carotene exhibits a wide range of health benefits, but its application in food formulation is very limited because of its instability and susceptibility to degradation. The stability of β-carotene can be improved by incorporation into an oil-in-water (o/w) emulsions. The objective of this research was to characterize β-carotene loaded nanoemulsions prepared with spontaneous emulsification method using ternary food-grade surfactants (Tween 80, Span 40, Span 80) and palm oil or VCO (virgin coconut oil) as oil phase with the surfactant-oil ratio of 4. The physicochemical stability of β-carotene loaded nanoemulsions during simulated digestions, which consist of the mouth, stomach, and intestine phases, was also evaluated using in-vitro digestion model. The results showed that β-carotene loaded nanoemulsions, prepared either using VCO or palm oil as the oil phase, had neutral pH (6.8±0.1), mean particle diameter of 129 -159 nm, showed monomodal particle size distribution with low polydispersity index (PdI) values  (0.214 - 0.266), and were not significantly different in zeta potential values ([-6,59]–[-8,9]). The β-carotene loaded nanoemulsions with VCO as the oil phase had a smaller mean particle diameter than that of palm oil. The physical stability of the β-carotene loaded nanoemulsions against digestive simulation in the mouth, stomach or intestine phases was not influenced by the oil phase type.  Both nanoemulsions were stable against simulated digestion in the mouth and stomach phases. After passing through the intestinal phase, the mean particle diameter increased and the particle size distribution changed from monomodal to bimodal. The β-carotene retention after passing through the mouth, stomach and intestinal phases of the β-carotene loaded nanoemulsion prepared using VCO were not significantly different from the palm oil.

 

ABSTRAK

β-Karoten mempunyai berbagai manfaat kesehatan, namun aplikasinya dalam formulasi pangan sangat terbatas karena tidak stabil dan mudah mengalami degradasi. Stabilitas β-karoten dapat ditingkatkan dengan menggabungkannya dalam sistem penghantaran berbasis emulsi minyak dalam air (o/w). Penelitian ini bertujuan untuk melakukan karakterisasi nanoemulsi β-karoten yang dibuat dengan metode emulsifikasi spontan menggunakan kombinasi tiga surfaktan food grade (Tween 80, Span 40, Span 80), minyak sawit maupun VCO (virgin coconut oil) sebagai fase minyak dengan rasio surfaktan-fase minyak 4.. Penelitian ini juga mengkaji stabilitas fisikokimiawi nanoemulsi β-karoten selama pencernaan di mulut, lambung dan usus dengan menggunakan model digesti in vitro. Hasil penelitian memperlihatkan bahwa nanoemulsi β-karoten yang dibuat dengan fase minyak VCO maupun minyak sawit memiliki pH netral (6,8±0,1), rerata diameter partikel 129–159 nm, distribusi ukuran partikel monomodal dengan nilai indeks polidispersitas (polydispersity index, PdI) rendah (0,214–0,266) dan zeta potensial yang tidak berbeda nyata ([-6,59]–[-8,9]). Nanoemulsi β-karoten dengan fase minyak VCO memiliki rerata diameter partikel yang lebih kecil dibanding minyak sawit sebagai fase minyak. Jenis fase minyak tidak berpengaruh terhadap stabilitas fisik nanoemulsi β-karoten selama simulasi pencernaan di mulut, lambung maupun usus. Nanoemulsi β-karoten dengan fase minyak VCO maupun minyak sawit stabil terhadap pencernaan di mulut maupun lambung. Setelah melewati fase usus, terjadi peningkatan diameter partikel rerata dan perubahan distribusi ukuran partikel dari monomodal menjadi bimodal. Retensi β-karoten dalam nanoemulsi VCO setelah melewati simulasi pencernaan mulut, lambung dilanjutkan fase usus tidak berbeda nyata dengan retensi β-karoten dalam nanoemulsi minyak sawit.


Keywords


Nanoemulsions; physicochemical stability; simulated digestion; β-carotene



References

Anton, N., & Vandamme, T. F. (2011). Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharmaceutical Research, 28(5), 978–985. http://doi.org/10.1007/s11095-010-0309-1.

Ariviani, S., Anggrahini, S., Naruki, S., & Raharjo, S. (2015). Characterization and chemical stability evaluation of β-carotene microemulsions prepared by spontaneous emulsification method using VCO and palm oil as oil phase. International Food Research Journal, 22(6), 2432–2439.

Bai, S., Lee, S., Na, H., & Kim, Y. (2005). β -Carotene inhibits inflammatory gene expression in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF- κ B activation. Experimental and Molecular Medicine 37(4), 323–334.

Boon, C. S. (2009). Factor Influencing the Stability of Carotenoids in Oil-in water Emulsions. Dissertation. Departement of Food science, University of Massachusetts Amherst.

Boon, C. S., McClements, D. J., Weiss, J., & Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50(6), 515–32. http://doi.org/10.1080/10408390802565889.

Castenmiller, J. J., & West, C. E. (1998). Bioavailability and bioconversion of carotenoids. Annual Review of Nutrition, 18, 19–38. http://doi.org/10.1146/annurev.nutr.18.1.19.

Cornacchia, L., & Roos, Y. H. (2011). Stability of β -carotene in protein-stabilized oil-in-water delivery systems. Journal of Agricultural and Food Chemistry, 59, 7013–7020. http://doi.org//10.1021/jf200841k.

Courraud, J., Berger, J., Cristol, J.-P., & Avallone, S. (2013). Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chemistry, 136(2), 871–877. http://doi.org/10.1016/j.foodchem.2012.08.076.

Dayrit, F. M., Buenafe, O. E. M., Chainani, E. T., Vera, I. M. S. De, Dimzon, I. K. D., Gonzales, E. G., & Santos, J. E. R. (2007). Standards for essential composition and quality factors of commercial virgin coconut oil and its differentiation from rbd coconut oil and copra oil. Philippine Journal of Science, 136(2), 119–129.

Donhowe, E. G., & Kong, F. (2014). Beta-carotene : Digestion, microencapsulation, and in vitro bioavailability. Journal of Bioprocessing and Technolog, 7, 338–354. http://doi.org/10.1007/s11947-013-1244-z.

Flanagan, J., & Singh, H. (2006). Microemulsions: a potential delivery system for bioactives in food. Critical Reviews in Food Science and Nutrition, 46(3), 221–237. http://doi.org/10.1080/10408690590956710.

Garrett, D. A., Failla, M. L., Sarama, R. J., & Craft, N. (1999). Accumulation and retention of micellar ␤ -carotene and lutein by Caco-2 human intestinal cells. The Journal of Nutritional Biochemistry, 2863(99), 573–581.

Gloria, N. F., Soares, N., Brand, C., Oliveira, F. L., Borojevic, R., & Teodoro, A. J. (2014). Lycopene and beta-carotene induce cell-cycle arrest and apoptosis in human breast cancer cell lines. Anticancer Research, 34, 1377–1386.

Heurtault, B., Saulnier, P., Pech, B., Proust, J.-E., & Benoit, J.-P. (2003). Physico-chemical stability of colloidal lipid particles. Biomaterials, 24(23), 4283–4300. http://doi.org/10.1016/S0142-9612(03)00331-4.

Hsu, J.-P., & Nacu, A. (2003). Behavior of soybean oil-in-water emulsion stabilized by nonionic surfactant. Journal of Colloid and Interface Science, 259(2), 374–381. http://doi.org/10.1016/S0021-9797(02)00207-2.

Hur, S. J., Decker, E. A., & McClements, D. J. (2009). Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion. Food Chemistry, 114(1), 253–262. http://doi.org/10.1016/j.foodchem.2008.09.069.

Hur, S. J., Joo, S. T., Lim, B. O., Decker, E. A., & McClements, J. D. (2011). Impact of salt and lipid type on in vitro digestion of emulsified lipids. Food Chemistry, 126(4), 1559–1564. http://doi.org/10.1016/j.foodchem.2010.12.003.

Kabak, B., & Ozbey, F. (2012). Assessment of the bioaccessibility of aflatoxins from various food matrices using an in vitro digestion model, and the efficacy of probiotic bacteria in reducing bioaccessibility. Journal of Food Composition and Analysis, 27(1), 21–31. http://doi.org/10.1016/j.jfca.2012.04.006.

Krinsky, N. I., & Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Molecular Aspects of Medicine, 26, 459–516. http://doi.org/10.1016/j.mam.2005.10.001.

Li, Y., Hu, M., & McClements, D. J. (2011). Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method. Food Chemistry, 126(2), 498–505. http://doi.org/10.1016/j.foodchem.2010.11.027.

Liu, Y., Hou, Z., Lei, F., Chang, Y., & Gao, Y. (2012). Investigation into the bioaccessibility and microstructure changes of β-carotene emulsions during in vitro digestion. Innovative Food Science dan Emerging Technologies, 15, 86–95. http://doi.org/10.1016/j.ifset.2012.04.002.

Mao, L., Xu, D., Yang, J., Yuan, F., Gao, Y., & Zhao, J. (2009). Effects of Small and Large Molecule Emulsifiers on the Characteristics of b -Carotene Nanoemulsions Prepared by High Pressure Homogenization. Food Technology and Biotechnology, 47(3), 336–342.

Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18(41), R635–R666. http://doi.org/10.1088/0953-8984/18/41/R01.

McClements, D. J. (2005). Food Emulsions: Principles, Practice, and Techniques (Second Edi). Boca Raton, Florida: CRC Press.

McClements, D. J. (2010). Emulsion design to improve the delivery of functional lipophilic components. Annual Review of Food Science and Technology, 1, 241–69. http://doi.org/10.1146/annurev.food.080708.100722.

McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719–1729. http://doi.org/10.1039/C2SM06903B.

McClements, D. J., & Li, Y. (2010). Structured emulsion-based delivery systems : Controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science, 159, 213–228. http://doi.org/10.1016/j.cis.2010.06.010.

McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330. http://doi.org/10.1080/10408398.2011.559558.

Mu, H., & Høy, C. (2004). The digestion of dietary triacylglycerols. Progress in Lipid Research, 43(2), 105–133. http://doi.org/10.1016/S0163-7827(03)00050-X.

Mun, S., Decker, E. A., & McClements, D. J. (2007). Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase. Food Research International, 40(6), 770–781. http://doi.org/10.1016/j.foodres.2007.01.007.

Mun, S., Kim, Y.-R., & McClements, D. J. (2015). Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chemistry, 173, 454–461. http://doi.org/10.1016/j.foodchem.2014.10.053.

Nik, M. A., Corredig, M., & Wright, A. J. (2010). Changes in wpi-stabilized emulsion interfacial properties in relation to lipolysis and ß-carotene transfer during exposure to simulated gastric–duodenal fluids of variable composition. Food Digestion, 1(1–2), 14–27. http://doi.org/10.1007/s13228-010-0002-1.

Piorkowski, D. T., & McClements, D. J. (2014). Beverage emulsions : Recent developments in formulation, production, and applications. Food Hydrocolloids 42: 5–41. http://doi.org/10.1016/j.foodhyd.2013.07.009.

Qian, C., Decker, E. A., Xiao, H., & McClements, D. J. (2012a). Nanoemulsion delivery systems: influence of carrier oil on β-carotene bioaccessibility. Food Chemistry, 135(3), 1440–1447. http://doi.org/10.1016/j.foodchem.2012.06.047.

Qian, C., Decker, E. A., Xiao, H., & McClements, D. J. (2012b). Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry, 132(3), 1221–1229. http://doi.org/10.1016/j.foodchem.2011.11.091.

Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, A. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1), 261–8. http://doi.org/10.1016/j.biortech.2008.06.039.

Rao, J., & McClements, D. J. (2011). Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method. Journal of Agricultural and Food Chemistry, 59(9), 5026–35. http://doi.org/10.1021/jf200094m.

Reis, P., Miller, R., Leser, M., & Watzke, H. (2009). Lipase-catalyzed reactions at interfaces of two-phase systems and microemulsions. Applied Biochemistry and Biotechnology, 158(3), 706–21. http://doi.org/10.1007/s12010-008-8354-5.

Rodriguez-Amaya, D. B., Kimura, M., Godoy, H. T., & Amaya-Farfan, J. (2008). Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. Journal of Food Composition and Analysis, 21(6), 445–463. http://doi.org/10.1016/j.jfca.2008.04.001.

Salvia-Trujillo, L., Qian, C., Martín-Belloso, O., & McClement, D. J. (2013). Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry, 141(2), 1472–80. http://doi.org/10.1016/j.foodchem.2013.03.050.

Salvia-Trujillo, L., Qian, C., Martín-Belloso, O., & McClements, D. J. (2013). Modulating β-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry, 139(1–4), 878–884. http://doi.org/10.1016/j.foodchem.2013.02.024.

Salvia-Trujillo, L., Rojas-Graü, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2013a). Physicochemical characterization of lemongrass essential oil–alginate nanoemulsions: Effect of ultrasound processing parameters. Food and Bioprocess Technology, 6(9), 2439–2446. http://doi.org/10.1007/s11947-012-0881-y.

Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2013b). Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids, 30(1), 401–407. http://doi.org/10.1016/j.foodhyd.2012.07.004.

Sarkar, A., Goh, K. K. T., & Singh, H. (2009). Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. Food Hydrocolloids, 23(5), 1270–1278. http://doi.org/10.1016/j.foodhyd.2008.09.008.

Sarkar, A., Horne, D. S., & Singh, H. (2010). Pancreatin-induced coalescence of oil-in-water emulsions in an in vitro duodenal model. International Dairy Journal, 20(9), 589–597. http://doi.org/10.1016/j.idairyj.2009.12.007.

Stefanovich, A. F., & Karel, M. (1982). Kinetics of beta-carotene degradation at temperatures typical of air drying of foods. Journal of Food Processing and Preservation, 6(4), 227–242

Tan, C. P., & Nakajima, M. (2005). Food Chemistry b -carotene nanodispersions : preparation, characterization and stability evaluation. Food Chemistry, 92, 661–671. http://doi.org/10.1016/j.foodchem.2004.08.044.

Versantvoort, C. H. M., Oomen, A. G., Van de Kamp, E., Rompelberg, C. J. M., & Sips, A. J. A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31–40. http://doi.org/10.1016/j.fct.2004.08.007.

Xu, D., Wang, X., Jiang, J., Yuan, F., Decker, E. A., & Gao, Y. (2013). Influence of pH, EDTA, α-tocopherol, and WPI oxidation on the degradation of β-carotene in WPI-stabilized oil-in-water emulsions. LWT - Food Science and Technology, 54(1), 236–241. http://doi.org/10.1016/j.lwt.2013.05.029.

Yang, Y., Marshall-Breton, C., Leser, M. E., Sher, A. A., & McClements, D. J. (2012). Fabrication of ultrafine edible emulsions: Comparison of high-energy and low-energy homogenization methods. Food Hydrocolloids, 29, 398–406. http://doi.org/10.1016/j.foodhyd.2012.04.009.

Yang, Y., & McClements, D. J. (2013). Vitamin E bioaccessibility: influence of carrier oil type on digestion and release of emulsified α-tocopherol acetate. Food Chemistry, 141(1), 473–81. http://doi.org/10.1016/j.foodchem.2013.03.033.

Yi, J., Li, Y., Zhong, F., dan Yokoyama, W. (2014). The physicochemical stability and in vitro bioaccessibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloids, 35, 19–27. http://doi.org/10.1016/j.foodhyd.2013.07.025.

Yuan, Y., Gao, Y., Zhao, J., & Mao, L. (2008). Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International, 41(1), 61–68. http://doi.org/10.1016/j.foodres.2007.09.006.



DOI: https://doi.org/10.22146/agritech.29087

Article Metrics

Abstract views : 4023 | views : 5372

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Setyaningrum Ariviani, Windi Atmaka, Sri Raharjo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats