Synthesis of Silver-Chitosan Nanocomposites Colloidal by Glucose as Reducing Agent

https://doi.org/10.22146/ijc.21220

Endang Susilowati(1*), Triyono Triyono(2), Sri Juari Santosa(3), Indriana Kartini(4)

(1) Chemistry Education Department, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir Sutami 36 A Surakarta 53126
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(*) Corresponding Author

Abstract


Silver-chitosan nanocomposites colloidal was successfully performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO3) as metal precursor and chitosan as stabilizing agent. Compared to other synthetic methods, this work is green and simple. The effect of the amount of NaOH, molar ratio of AgNO3 to glucose and AgNO3 concentration towards Localized Surface Plasmon Resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The stability of the colloid was also studied for the first 16 weeks of storage at ambient temperature. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 402.4–414.5 nm. It is also shown that the absorption peak of LSPR were affected by NaOH amount, ratio molar AgNO3/glucose and concentration of AgNO3. The produced silver nanoparticles were spherical with dominant size range of 6 to 18 nm as shown by TEM images. All colloidals were stable without any aggregation for 16 weeks after preparation. The newly prepared silver-chitosan nanocomposites colloidal may have potential for antibacterial applications.

Keywords


nanocomposite; colloidal; silver nanoparticles; chitosan; glucose

Full Text:

Full Text Pdf


References

[1] Alexandre, M., and Dubois, P., 2000, Mater. Sci. Eng., R, 28(1-2), 1–63.

[2] Shameli, K., Ahmad, M.B., Zargar, M., Yunus, W.M.Z.W., Ibrahim, N.A., Shabanzadeh, P., Ghaffari, M., and Moghaddam, 2011, Int. J. Nanomed., 6, 271–284.

[3] Honary, S., Ghajar, K., Khazaeli, P., and Shalchian, P., 2011, Trop. J. Pharm. Res., 10(1), 69–74.

[4] Wei, D., Sun, W., Qian, W., Ye, Y., and Ma, X., 2009, Carbohydr. Res., 344(17), 2375–2382.

[5] Vorobyova, S.A., Lesnikovich, A.I., and Sobal, N.S., 1999, Colloids Surf., A, 152(3), 375–379.

[6] Shameli, K., Ahmad, M.B., Yunus, W.M.Z.W., Ibrahim, N.A., Gharayebi, Y., and Sedaghat, S., 2010, Int. J. Nanomed., 5, 1067–1077.

[7] Li, Z., Li, Y., Qian, X-F., Yin, J., and Zhu, Z-K., 2005, Appl. Surf. Sci., 250(1-4), 109–116.

[8] Tsuji, T., Watanabe, N., and Tsuji, M., 2003, Appl. Surf. Sci., 211(1-4), 189–193.

[9] Chudasama, B., Vala, A.K., Andhariya, N., Mehta, R.V., and Upadhyay, R.V., 2010, J. Nanopart. Res., 12(5), 1677–1685.

[10] Faraha, A.A., Alvarez-Puebla, R.A., and Fenniri, H., 2008, J. Colloid Interface Sci., 319(2), 572–576.

[11] Zheng, M., Gu, M., Jin, Y., and Jin, G., 2001, Mater. Res. Bull., 36, 853–859.

[12] Luo, C., Zhang, Y., Zeng, X., Zeng, Y., and Wang, Y., 2005, J. Colloid Interface Sci., 288(2), 444–448.

[13] Singh, N., and Khanna, P.K., 2007, Mater. Chem. Phys., 104(2-3), 367–372.

[14] Zhou, Y., Yu, S.H., Wang, C.Y., Li, X.G., Zhu, Y.R., and Chen, Z.Y., 1999, Adv. Mater., 11(10), 850–852.

[15] Cai, J., Kimura, S., Wada, M., and Kuga, S., 2009, Biomacromolecules, 10(1), 87–94.

[16] Huang, H., Yuan, Q., and Yang, X., 2004, Colloids Surf., B, 39(1-2), 31–37.

[17] Raveendran, P., Fu, J., and Wallen, S.L., 2003, J. Am. Chem. Soc., 125(46), 13940–13941.

[18] Pranoto, Y., Rakshit, S.K., and Salokhe, V.M., 2005, LWT Food Sci. Technol., 38(8), 859–865.

[19] Slawson, R.M., Van Dyke, M.I., Lee, H., and Trevors, J.T., 1992, Plasmid, 27(1), 72–79.

[20] Zhao, G.J., and Stevens, S.E., 1998, Biometals, 11(1), 27–32.

[21] Sharma, V.K., Yngard, R.A., and Lin, Y., 2008, Adv. Colloid Interface Sci., 145(1-2), 83–96.

[22] Darroudi, M., Ahmad, M.B., Abdullah, A.H., Ibrahim, N.A., and Shameli, K., 2010, Int. J. Mol. Sci., 11(10), 3898–3905.

[23] Kim, K.M., Son, J.H., Kim, S.K., Weller, C.L., and Hanna, M.A., 2006, J. Food Sci., 71(3), 119–124.

[24] Singh, N., Sinha, I., and Mandal, R.K., 2009, Mater. Lett., 63(3-4), 425–427.

[25] Božanić, D.K., Dimitrijević-Branković, S., Bibić, N., Luyt, A.S., and Djoković, V., 2011, Carbohydr. Polym., 83(2), 883–890.

[26] Guzmán, M.G., Dille, J., and Godet, S., 2009, Int. J. Chem. Biol. Eng., 2(3), 104–111.

[27] Šileikaitė, A., Puišo, J., Prosyčevas, I., and Tamulevičius, S., 2009, Mater. Sci. (Medžiagotyra), 15(1), 21–27.

[28] Heath, J.R., 1989, Phys. Rev. B: Codens. Matter, 40(14), 9982–9985.



DOI: https://doi.org/10.22146/ijc.21220

Article Metrics

Abstract views : 2868 | views : 3802


Copyright (c) 2015 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.