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Abstract Remote sensing technology has been widely used in various applications related to natural resources and 
environment monitoring. In this paper, we evaluated the capability of new Sentinel-2A image to map the distribution 
and percent cover of seagrass in optically shallow water of Jerowaru coastal area, East Lombok. Seagrass distribution 
map was produced from radiometrically and geometrically corrected Sentinel-2A image with overall accuracy of 61.9%. 
Using empirical model, seagrass percent cover was predicted with maximum coefficient of determination (R2) of 0.51 
and standard error of estimate (SE) of 19.4%. The results suggest that Sentinel-2A image can be used to perform seagrass 
mapping time and cost-effectively and can be further improved by incorporating more robust empirical modeling 
technique.
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Abstrak Teknologi penginderaan jauh telah banyak digunakan dalam berbagai aplikasi terkait inventarisasi sumberdaya 
alam dan pemantauan lingkungan. Pada penelitian ini, kemampuan data penginderaan jauh Sentinel-2A diuji untuk 
memetakan distribusi dan persentase tutupan padang lamun di perairan laut dangkal Kecamatan Jerowaru, Lombok 
Timur. Peta distribusi padang lamun dihasilkan dari citra Sentinel-2A terkoreksi radiometrik dan geometrik dengan 
akurasi 61,9%. Menggunakan model empiris, persentase tutupan lamun diestimasi dari citra Sentinel-2A dengan koefisien 
determinasi (R2) sebesar 0,51 dan standard error (SE) sebesar 19,4%. Hasil penelitian ini menunjukkan data penginderaan 
jauh Sentinel-2A dapat digunakan untuk dalam pemetaan padang lamun dengan waktu dan biaya yang efektif. 

Kata kunci: Penginderaan jauh, Sentinel-2A, Padang lamun, Pemetaan

1. Introduction
The coastal zone is essential to marine life and 

support a large part of the world’s living marine 
resources [Short & Coles, 2001]. One of the most 
valuable resources in the coastal area is seagrass. Seagrass 
habitats provide various ecological services such as fish 
feeding and nursery grounds,  sediment stabilizer, and 
carbon storage [Hogarth, 2015]. Despite its importance, 
seagrass habitats are exposed to pressure and threat 
from anthropogenic and natural impact [Nadiarti, et 
al., 2012]. A study found that Indonesia has lost 30% 
area of its seagrass beds [UNEP, 2004].  

In order to reverse the degradation trends, there 
is a growing need to map and monitor distribution and 
abundance of seagrass beds. This may provide useful 

information for management and conservation strategy 
in coastal area. For decades, remote sensing technology 
has been widely used for mapping and monitoring 
coastal and shallow sea environment because of its 
cost-effectiveness and large area coverage [Hartono, 
1994; Mumby, et al., 1997]. Several studies succesfully 
used remote sensing data to map seagrass area and 
percentage cover [Pu, et al., 2012], species composition 
[Fyfe, 2003], and other biophysical properties such as 
leaf area index [Wicaksono & Hafizt, 2013], biomass 
[Knudby & Nordlund 2011], and above-ground carbon 
stock [Wicaksono, 2015].

The capability of moderate spatial resolution 
remote sensing data such as Landsat (30 m pixel size) 
and ASTER-VNIR (15 m pixel size) has already been 
demonstrated for mapping and monitoring seagrass 
biophysical characteristics [Armstrong, 1993; Mumby, 
et al., 1997; Wicaksono & Hafizt, 2013; Pu, et al., 2014]. 
Those data are available for free, and has high revisit 
capability, and thus very useful to map large area cost 
effectively. Recently, a new earth-observation satellite 
named Sentinel-2A was launched on June 2015 as 
part of Sentinels mission and Europe’s Copernicus 
programme to provide data continuity for environmental 
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monitoring of earth surface. Sentinel-2A satellite carries 
mult-ispectral imager (MSI) onboard with 13 spectral 
bands at visible, near-infrared, and shortwave-infrared 
wavelength with 10, 20, and 60 m spatial resolution, 
respectively. Moreover, the multispectral imager is 
capable of covering wide swath of 290 km, has frequent 
revisit time, and can be obtained freely, which make it 
very potential to be used in wide range of applications 
[ESA, 2015]. However, mapping seagrass abundance 
has never been done using Sentinel-2A data. This study 
aims to evaluate the performance of Sentinel-2A image 
to understand its potentials and usefulness for mapping 
seagrass biophysical properties. Seagrass percent cover 
was selected as the parameter of interest to be mapped, 
since it is currently recognized as a key parameter for 
seagrass monitoring effort [McKenzie, et al., 2001]. 
Seagrass percent cover is defined as the area of substrate 
which is covered by seagrass when observed directly 
from above [Phinn, et al.. 2008].

2.  The Methods
Study area

This research was carried out in part of 
north coastal area of Jerowaru District, East 
Lombok Region, Nusa Tenggara Barat Province. 
Seagrass are located in optically shallow water 
(<3 m depth) on sand and mud substrate and 
dominated by species such as Enhalus acoroides, 
Thalassia hemprichii, and Cymodocea rotundata. 
Several less-dominant species such as Halophila 
ovalis and Halodule universis are also present. The 
condition of seagrass beds vary from continous 
beds with single species and mixed species to 
patchy beds. Seagrass beds in this study area are 
associated with other benthic organisms such as 
micro benthos and coral reefs.

 
Field methods

Fieldwork was carried out from 22 – 25 May 
2016. Prior to field survey, visual and digital image 
interpretation was performed to determine field 
data location. Point-based field data of substrate 
type, seagrass species composition, and percent 
cover were collected with photo-quadrat and 
photo-transect method [Roelfsema, et al. 2014] 
by snorkeller using digital underwater camera 
and 1 m2 quadrat. A handheld global positioning 
system device (GPS) was towed to a snorkeller 
to acquire field data position. Photos taken from 
field survey were interpreted in the laboratory. 

Figure 1. The location of study area

A total of 253 data points were collected and 
generalized into 96 samples to match Sentinel-2A 
image pixel size, which are presented in Figure 2. 
From all these samples, 80 samples are seagrass, 
and 16 others are non-seagrass. Half of seagrass 
samples were used to train the maximum 
likelihood classification algorithm and develop 
the empirical model, while the other half was 
used for accuracy assessment.

Image data and pre-processing
Remote sensing data used in this study 

is Sentinel-2A Level-1C (top-of-atmosphere 
reflectance) image, covering Jerowaru District, 
and acquired on 18 May 2016 from Sentinels 
Scientific Data Hub (http://scihub.copernicus.
eu). Only visible spectral bands with 10 m pixel 
size (band 2, band 3, band 4) were used in this 
study. These bands were selected because of their 
capability of penetrating water body, so that the 
features on the optically shallow water can be 
detected by the imaging sensor [Green, et al., 
2000]. Atmospheric correction was applied to 
the data using dark object substraction method 
[Chavez, et al., 1977] performed. Water column 
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effect was compensated using method developed 
by Lyzenga [1981], producing single depth-
invariant bottom index from each pair of spectral 
bands. In this study, we named these depth-
invariant bottom index (DII) bands as b2b3, 
b2b4, and b3b4, representing the pair of the 
origin spectral bands being used. These three DII 
bands no longer contains reflectance information 
of seabed objects but the normalized index value 
invariant to the variation of depth.

Benthic habitat mapping
Digital supervised image classification with 

Maximum Likelihood algorithm was applied on 
three DII from Sentinel-2A image to produce 
benthic habitat map. This habitat map was used 
to distinguish seagrass and non-seagrass area, 
since only seagrass pixels were used to map 
seagrass percent cover. Since seagrass biophysical 
properties were controlled by species [Wicaksono, 
2015], it was necessary to differentiate seagrass 
based on its morphology or canopy structure 
[Wicaksono & Hafizt, 2013]. The classification 
scheme used consists of six classes, which are 
bare substrate, coral reefs, Ea-seagrass, EaTh-

seagrass, ThCr-seagrass, and optically deep water. 
Details of seagrass classes are presented on Table 
1. Confusion matrix analysis [Congalton, 1991] 
were used to assess the classification accuracy of 
benthic habitats map.

Seagrass percent cover mapping
Empirical modelling approach was 

performed to estimate seagrass percent cover by 
calibrating DII values with corresponding field 
seagrass percent cover data. We developed four 
linear regression models, three models for each 
class of seagrass (Ea, ThCr, EaTh) and one model 
for all class of seagrass regardless of their species 
and canopy structure. Seagrass percent cover 
data were used as the dependent variable while 
DII values were as the independent variable. 
From three DII bands, only bands that produced 
significant correlation at 95% confidence level 
(95%CL) with field data were used as input in 
the empirical modeling of seagrass percent cover 
using regression analysis. The accuracy of the 
estimated seagrass percent cover was calculated 
using standard error of estimate (SE).

Figure 2. Field data distribution at study area
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Table 1. Seagrass classification scheme based on morphology or canopy structure

Class 
name

Dominant 
species Additional information Picture

Ea Enhalus 
acoroides

Leaf extends vertically 
within water column

ThCr Thalassia 
hemprichi, 
Cymodocea 
rotundata, 
Halophila 
ovalis., 
Halodule 
uninervis

Leaf covers the substrate 
and not significantly 
extending vertically 
within water column

EaTh Enhalus 
acoroides, 
Thalassia 
hemprichi, 
Cymodocea 
rotundata, 
Halophila 
ovalis., 
Halodule 
uninervis

A mixed between Ea-
type and ThCr-type at 
significant proportional 
coverage

Source: Wicaksono & Hafizt [2013]

3.  Result and Discussion 
Mapping seagrass distribution 

The result of Maximum Likelihood 
classification is shown in Figure 3. An overall 
accuracy of 61.9% was obtained. The class with 
the lowest user and producer accuracy is Ea, 
where the user accuracy is zero percent (0%), 
which mean that there is no chance that the Ea 
class in the classified image is actually seagrass 
in the field. In addition, 0% of Ea class producer 
accuracy also means that no Ea class in the field is 
correctly classified. EaTh class, which contains Ea 
species, was also tend to be missclassified as ThCr 
class. Both bare substratum and coral reef class 
also suffered from similar misclassification, where 
most of them were classified as ThCr. Optically 
deep water is the only class that was classified 
correctly, suggesting that it was spectrally distinct 

compared to benthic habitats in optically shallow 
water. 

These errors may come from various factors. 
The first factor could be the environmental 
conditions of our study site. Our study site is a 
complex environment, where multiple species of 
seagrass and other benthic covers such as coral 
reefs and macro algae are present. During the 
high tide, the wave is likely causing a turbulance, 
which increases the water turbidity, due to the 
presence of limestone cliffs which separates one 
beach to another. The suspension caused by wave 
turbulance may affect the reflectance from water 
column and limit the penetration capability of 
Sentinel-2A visible bands. 

The second factor is the spatial resolution 
of Sentinel-2A image. At 100 m2, reflectances 
from objects in the corresponding pixel were 
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generalized. In addition, it is also problematic 
when different benthic objects are located adjacent 
to each other. The bandwidth and wavelength 
sensitivity of Sentinel-2A spectral bands may also 
incapable of detecting the difference of unique 
reflectance from each seagrass class. Previous 
study shows that at less complex environment 
with homogenous benthic type, multispectral 
data have better performance in mapping benthic 
habitats [Green, et al., 2000; Goodman, et al., 
2013]. 

Third, these high misclassification rates of 
seagrass classes are mainly due to the limitation 
of samples available. Given more samples, we 
may yield better results as in Wicaksono & 
Hafizt [2013]. The last factor, even though the 
probability is small, the error may be caused 
by the misidentification and inconsistencies 

of interpreter in interpreting the field photos, 
suggesting that mapping benthic habitats as 
well as seagrass species composition in complex 
environment using remote sensing is still a 
difficult task.

Mapping seagrass percent cover 
The empirical modeling of seagrass percent 

cover using Sentinel-2A image was performed 
using linear regression analysis. Linear regression 
models between Depth-invariant bottom index 
(DII) and field seagrass percent cover data 
produced high coefficient of determination 
(R2). Linear regression graphics of the strongest 
relationship between DII and field seagrass 
percent cover for each seagrass class are presented 
in Figure 4. The accuracy of the estimated seagrass 
percent cover was provided at Table 3.

Table 2. Confusion matrix for classification of nearshore benthic habitats at the study area. Field data in columns, 
classification results in rows 

 Ea EaTh ThCr Bare 
substrate Coral reef Optically 

Deep water Total User accuracy 
(%)

Ea 0 1 8 0 0 0 9 0.0
EaTh 0 1 3 0 0 0 4 25.0
ThCr 1 0 8 0 1 0 10 80.0
Bare substrate 1 0 1 2 0 0 4 50.0
Coral reef 3 0 8 0 2 0 13 15.4
Optically Deep water 0 0 0 0 0 31 31 100.0
Total 5 2 28 2 3 31 71  

Producer accuracy (%) 0.0 50.0 28.6 100.0 67.0 100.0 Overall accuracy 
= 61.9

Figure 3. The result of Maximum Likelihood classification with 61.9% overall accuracy
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The resultant regression function obtained from 
these empirical models can only be applied on the 
corresponding seagrass pixels. Thus, we have four 
different seagrass percent cover models based on 
the empirical model of each seagrass class. Table 3 
shows the SE of the estimated seagrass percent cover 
from the model. Because the habitat map produced 
from multispectral classification was not capable to 
distinguish seagrass with different type of canopy 
structure, it was not possible to map seagrass percent 
cover for each seagrass type separately using these three 
empirical models. Hence, the only model used to map 
seagrass percent cover is the model developed from DII 
b2b4 for all seagrass class. In this complex environment 
where the water is slightly turbid and multiple seagrass 
species and associate benthic habitats are present, 
empirical model created from DII b2b4 derived from 
Sentinel-2A image had R2 of 0.51 with SE of 19.4%. 

The accuracy of seagrass mapping of this research 
is lower than the result obtained by Topouzelis et al. 
[2016]. Nevertheless, the accuracy of seagrass percent 
cover model obtained in this research is not comparable 
to the research conducted by Topouzelis, et al. [2016] 
although they used similar sensor, especially since their 
class complexity is lower than in our research. Their 
classification scheme consists of seagrass, soft bottom 
and hard bottom, while in this research we mapped the 
species composition.

Table 3. Accuracy assessment for seagrass percent 
cover model

Validation sample Band SE 
(%)

Ea (n=5) DII b2b4 37.8

ThCr (n=28) DII b2b4 18.0

EaTh (n=3) DII b3b4 63.8

Total seagrass (n=36) DII b2b4 19.4

Separating seagrass from other benthic habitats 
is more feasible than differentiating various seagrass 
species. However, our accuracy is comparable to other 
several studies that utilized different sensors. Using 
hyperspectral EO-1 Hyperion data with 30 m spatial 
resolution, Pu, et al. [2012] achieved R2 of 0.78 and SE 
of 15.7% at shallow clear water Northwest coastline of 
Florida. Landsat 5 TM data produced lower result with 
R2 of 0.59 and SE of 21.2%.

When mapping seagrass percent cover, Phinn, et 
al. [2008] suggested a classification method with several 
classes of percent cover range in case the correlation 
between spectral band reflectance and seagrass percent 
cover is not significant to enable the development of 
percent cover estimation based on regression analysis. 
At the same spatial resolution as Sentinel-2 data, 
SPOT-5 data managed to map monobed Posidonia 
oceanica seagrass at Laganas Bay, Greece with four 

Figure 4. Linear regression analysis between DII value and field seagrass percent cover showing mild (b2b4 - 
ThCr) to strong (b2b4 – Ea, b3b4 – EaTh, b2b4 – all classes) prediction power
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ThCr) to strong (b2b4 – Ea, b3b4 – EaTh, b2b4 – all classes) prediction power
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benthic classes including dense cover seagrass, sparse 
cover seagrass, algae, and sand with high classification 
accuracy of 96% [Pasquialini, et al., 2005]. This research 
also revealed that increasing the spatial resolution does 
not always have a positive impact in the accuracy of 
classification. In fact, pan-sharpened SPOT-5 image 
with 2.5 m spatial resolution at the same region and 
classification scheme produced lower classification 
accuracy of 73% [Pasquialini, et al., 2005]. Phinn, et 
al. [2008] used Landsat 5 TM, CASI, and Quickbird 
image with spatial resolution of 30 m, 4 m, and 2.4 m 
respectively, to map four categories of seagrass percent 
cover at multi-species seagrass bed of Moreton Bay, 
and resulted in classification accuracy not larger than 
45%, suggessting the ineffectiveness of these images 
in distingusishing seagrass percent cover class using 
digital classification. 

Most of seagrass percent cover mapping approach 
used digital classification and resulting in classes of 
seagrass percent cover range, or simpler class such as 
dense or sparse class of seagrass. However, mapping 
seagrass percent cover with empirical model results in 
more precise information since every pixel will have its 

own percent cover value. This model later can be used 
as the baseline for deriving another seagrass biophysical 
properties such as standing crop or above-ground 
biomass and leaf-area index, which are the properties 
that highly correlated with seagrass percent cover 
[Wicaksono, 2015]. The resulting seagrass percent cover 
map is presented in Figure 5. 

4.  Conclusion 
North coastal area of Jerowaru District is a 

complex environment, with the presence of several 
species of seagrass and associate benthic habitats. We 
found that even in the complex environment such 
as our study area, Sentinel-2A image can be used to 
map seagrass habitat distribution up to 61.9% overall 
accuracy and seagrass percent cover with SE of 19.4%. 
The accuracy could be better given more samples used 
to train and calibrate the image. Applying additional 
spectral transformations such as Principle Component 
Analysis (PCA) or Independent Component Analysis 
(ICA) [Wicaksono, 2016] might increase the accuracy 
and robustness of empirical modelling result.  Hence, 

Figure 5. Seagrass percent cover map modeled from DII b2b4 with SE 19.4%
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we concluded that Sentinel-2A could be a good data 
source for mapping and monitoring resources in coastal 
and nearshore optically shallow water environment over 
large area overtime cost-effectively.
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