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A simple algorithm originally proposed by Choong, Paterson and Scott (2002) was
tested on a model of an isothermal controlled-cycled stirred tank reactor with substrate

inhibition kinetics, (r=1~~c). In previous work, this reacting system had been
shown to exhibit steady-state multiplicity. The transition period of this system to the
stable steady state is sometimes characterized by very slow change followed by a very
rapid convergence to the stable steady state. Tests of the Choong-Paterson-Scott
algorithm showed that the feature, which prevents premature termination of the
calculations prior to reaching the true steady state, is very useful for this system.
However, tests of the stopping criterion showed that the other feature of reducing the
computing time was not realized in this system.
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INTRODUCTION

Many chemical processes are operated
cyclically.In such systems, the process is started
witha pre-determined set of initial conditions and
then allowed to go through one cycle after which
the output from the initial cycle determines the
initial conditions for the succeeding cycle. In
many cases, simulating such systems involve
solving a number of ordinary differential
equations (ODE's) or partial differential equations
(POE's) thousands of times before the so-called
"cyclicsteady state" is achieved.

Ideally, a cyclic steady state is achieved when

Yn+l - Yn =0

where Y n+l and Y n are the vectors of state

variables at corresponding portions of the cycle
at cycles nand n + 1 respectively. Verbally,we say
that "cyclicsteady state" has been achieved when
the output form succeeding cycles are identical.

While condition (1) may be intuitively
obvious, it is impossible to achieve. Hence, a
common criterion for achieving cyclicsteady state
is used to

Y n+1 - Y n ~ & (2)

(1)

where E is a previouslyselected smallnumber.
The transient behaviors of these systemsare

often characterized by either very slow or
extremely rapid transitions to steady state.
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Hence, the use of condition (2) may sometimes
result in a premature termination of the
simulationsbefore the time cyclicsteady state is
achieved. To address this concern, Choong,
Paterson and Scott (2002) proposed a rational
stoppingcriterionfordeterminingwhen the cyclic
steady state has been achieved.

THE RATIONAL STOPPING
CRITERION

In .this section, the essential fixtures and
equations of the Choong, Paterson and Scott
(2002) algorithm are discussed. The reader is
referredto the originalpaper fora more extensive
discussion.(The author has taken the libertyof
modifyingthe or~ginalnotation slightlyto aid in
clarity.)

TheChoongPatersonand Scottalgorithmhas
two features, which may make it useful for the
simulation of cyclicprocesses. First, it provides
an unambiguous criterionfor determiningwhen
cyclicsteady state has been achieved. Second,
the algorithmmay result in savings in computer
time as the algorithmprovides for a predictionof
the values of the state variables at cyclicsteady
state.

To achieve these two features, the algorithm
numbers use of the behavior of the differencein
the valuesofthe state variablesintwosucceeding
cycle.In a systemwith a singlestate-variable,the
difference between successive cycles (the
"advance") may be represented as:

If the advances are plotted vs. number of
cyclesin a semi log plot, the slope knat the n-th
cycle is expressed as

k" = IndY" -lndY,,_t

A quasi-linear region is said to have been
identifiedwhen

kn - kn_1< 0.1
kn

and

(6)

When these conditionsare met, k = k cann
be said to be almost constant and a prediction
for cyclic steady state can be derived such that

_ exp(k)
Yao- y" + dY" 1_ exp (k ) (7)
where y. is the prediction of the final cyclic

steady state. An extension of this derivation wiD
provide a criterion such that the simulation can
be stopped when

[

1-ek

]Ay" ~ 0.49 x 10 -6 e k (8)

where a is the number of significant figures
required in the final product or outcome.

THE CONTROLLED-CYCLED
STIRRED TANK REACTOR

The operation of the first stage of a
controlled-cycled stirred tank reactor is similar
to that of a batch reactor. However, in
succeedingstages, not allof the reactingmixture
is emptied. A fraction is allowed to remain
behind. The next stage is then started with a
mixture of the fraction that remains behind and
a freshbatchof feed.The operationof a CCTR
is diagrammed in Figure 1.

(3) Cycle No.1..........C... ..

/<~F>< i vni":"~8",~> V,
t= 0 t = t*

(4) Cycle Nos. 2~

(5)

Figure 1. Operation of a Controlled-Cycled
Stirred Tank Reactor
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N.B.Le (1982) created some simplemodels
ofa CCTRincludingthat of an exothermic first-
orderreaction occurring in adiabatic CCTR.
Inherwork, N. B. Le (1982) found some very
complexbehavior including very long-period
oscillations and "chaotic" behavior. An
isothermalCCTR, while simpler, can also be
shownto exhibitsome fairlycomplex behavior.
Inthissituation, only a mass-balance needs to
be derived. The mass- balance for the n-th
batchof a CCTR is similar to that of any other
batchreactor:

subjectto the initialcondition C"= C,,(O)where
C. is the concentration of the n-th batch after
start-upand r(C,.}is the reaction rate.

The CCTR differs from a batch reactor in
thatthe initial condition for a particular batch
isderived from the previous batch. Defining
CJ") as the concentration in the reactor at the
timethe reaction is stopped, t*, the initial
concentrationin the (n+ l)-st batch can then
beobtainedvia the mass balance.

(10)

where VT is the total reactor volume, VR is the
amountof reacting fluid allowed to remain and

VF is the amount of feed fed into the reactor at
thebeginning of each cycle and C F is the feed
concentration.

When simple first-order and second-order
reactionsare conducted in a CCTR, the steady
statehas been shown to be always unique and
stable (Razon, 1988). However, it has been
shown that when a reaction represented by
substrate-inhibition kinetics

-kC"

r(C,,)= l+KC"
(11)

isconducted in a CCTR, steady state multiplicity
maybe possible (Razon, 1988).

In this system, the conversion for the n-
th batch,

can be computed numericallyfrom the implicit
non-linearalgebraic equation.

(13)

(9) V
h

· f - R

were K =KC n - V 'T

The behavior of this system is complicated
by the fact that equation (13)becomesundefined

if at any time X"(0)= 1. In this case,

Da = kt"

(14)

and the succeeding batch is defined instead by

With these model equations, .some simple
numerical simulationscan be done. Depending
on the initialcondition and the results from the
previous batch, either equation (13) or the
combinationofequations (14)and (15)aresolved
successively, using the secant method, to
determine the conversion at each cycle.

Some results are demonstrated in Figure 2.
Itcan be seen in curve (a) that the transient state
of such reactor is sometimes characterized by
very long induction period followed by a rapid
convergence onto the steady state. Hence, the
system makes a good test for the usefulness of
the Choong, Paterson and Scott algorithm.

NUMERICAL SIMULATIONS-
TRIALS OF THE CHOONG-
PATERSON-SCOTT ALGORITHM

Effectivenessof the Choong-Paterson-Scott
algorithm was tested by comparing it to the
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x1(0)= 0.74 Da= 5.3069 .
x1(0)= 0.76 K* = 8 (c) S

X1(0): 0.72 f= 0.5 ~ ~X
1(0) - 0.75 ;:
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Figure 2. Conversion vs. Number of Cycles for Four Different Initial Conditions

Effectiveness of the simple stopping criterion
represented by Eq. (2). Effectiveness of each can
then be judged according to the following criteria:

1. What value is predicted by the algorithmto
be the steady-state value?

2. At which cycle does each stopping criterion
predict the value of the steady-state?

A comparison can then be made to the
true steady-state value for each set of
parameters.

Comparisons were made using a set of
parameters where it is predicted that the system
willexhibitmultiplesteady states (Razon, 1988).
ThechosenparameterswereDa= 6-1n(2),1=0.5
and K*= 8. Atthisset ofparameters,steadystates
are predicted at

x 00= 10.45008034,0.75,1.04991966) .

Direct simulations in previous work have
shown that the first steady state is stable and
that the middle one is unstable (Razon,
1988). The third steady state is physically

impossible. Treatment of the third steady
state is discussed below.

Three initial conditions were chosen which
could be considered typical examples of the
varietyofbehavior that isusuallyobservedinthis
system. At an initialcondition Xl(0) = 0.72,a
short, rapid transitionto steady state isobserved.
This is illustrated in curve (a) of Figure 2. The
second type [curve (b) in Figure2] is one, which
startswitha very long inductionperiod, followed
by a rapid transition to steady state. The third
initialcondition illustratesbehavior that is rather
unusual and may be unique to this system. In
thiscase, the systemmakes a slowapproach toa
high conversion, until it reaches a predicted
conversion of greater than 100% [curve (c) in
Figure2]. Sincethis is not possible,the system
should be simulated by Equation (14) and (15)
insteadof Equation (13). Becauseofthis,a lower
value of Xn= f = 0.5 is immediatelypredictedin
the next cycleand the systemonce again goesto
the lowersteadystate. Curve(d)inFigure2 shows
the behavior when the initial condition is set

exactlyat Xl(0) = 0.75, thevalueoftheunstable
steady state. Curve (d) was drawn only to show
the location of the unstable steady state.
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Table1 shows the results from applying the
Choong-Paterson-ScottAlgorithm[Equation(7)]
tothesesituations. A comparison is made to the
simplecriterionrepresented by Equation (2). In
thesimulationssummarized in Table1, a desired
accuracyof three significantfigureswas chosen.
Hence,in applying Equation (7), a value of a =
3wasused. In applying Equation (2), a value of
A= 0.49 x 10 -3was used. The "true" value is
0.45008034,the lower steady state.

ThecomparisoninTable1 showsthe obvious
advantageof using Equation (7). IfEquation (2)
isused, the simulation is stopped far too early
and hence the simulation would have been
stoppedafter only two cycles. Equation (7), in
conjunctionwith the other criteria set by the
Choong-Paterson-Scottalgorithm, predicts the
valueofthe steadystate to a reasonableaccuracy.
Theslow transition from the initial condition,
which could be deceiving, was accurately
determinedto be merely a transition.

The rapid transitionto steady state, however,
causesEquation (7)to predict a steady state only
after a large number of cycles. In fact, it
consistentlypredictsthat the computationsshould
bestoppedonlyeightcyclesbefore accuracyto 6
significantfiguresis achieved. Hence, we do not
getmuch savings in computing time.

Afewother trialsnot reported here, showed
resultsconsistent with the results summarized
inTable1.

CONCLUSIONS

The Choong-Paterson-Scott algorithm
provides a simple-to-implement and accurate
meansof determining the attainment of cyclic
steadystate.Simulationswitha controlled-cycled

stirred tank reactor showed that the algorithm
accuratelydetected a slowtransition.Steadystate
was correctly predicted to occur later in the
transition. Therefore, it provides a simple,
effective and conservative criterion for
determining cyclic steady-state. The other
possible benefit, reduced computing time, was
however not achieved, as the Choong-Paterson-
Scott did not make a prediction until a
considerable number of cycles had been
simulated.

Further tests of the Choong-Paterson-Scott
algorithmcan be done on systemsthat are more
complex. Morework can also perhaps be done
on developingalgorithmsof this type.
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NOTATION

Roman Letters

CF concentration of the feed for each
batch.
concentration of the reactant for the
n-th cycle
Damkohlernumber, kt*
fraction of the reacting mixture
removed at the end of the cycle,V/
VI
rate constant

slope of a semi log plot of advances
vs. number of cycles

Da
f

k
kn

Table 1. Performance of Stopping Criteria

Equation (7) Equation (2) Cycle
Initial Predicted Deviation Cycle Predicted Deviation Cycle number
Con- value of from number value of from number when
dition steady-state "true" when steady-state "true" when conver-

X1(O) X? value stopped X? value stopped gence to 6
s.t. is

detected
0.74 0.46969323 2.33% 1360 0.7399964 64.4% 2 1368
0.76 0.46578914 3.49% 1434 0.7600035 68.8% 2 1442
0.72 0.46060825 2.34% 138 0.7198985 60.0% 2 146
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K equilibrium constant
n cyclenumber
t time
t* time when the reaction for the n-th

batch is stopped
VT total volume of reactant
VR volume of reacting fluid allowed to

remain

VF volume of reactant fed into each
batch

X {t} conversion of reactant at time t forn
the n-th batch.

Yn generic state variable, determined at
the n-th cycle

Y. predicted value of the steady state (n
= ")

Greek Letters
d number of significantfiguresrequired

in the finalproduct
a an arbitrarilychosen smallnumber
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