Simultaneous Effect Of Temperature And Time Of Deacetylation On Physicochemical Properties Of Glucomannan

https://doi.org/10.22146/ajche.49541

Dyah Hesti Wardhani(1*), Fatoni Nugroho(2), Nita Aryanti(3), Aji Prasetyaningrum(4)

(1) Chemical Engineering Department, Faculty of Engineering, Diponegoro University, Jl. Prof. Sudarto, Tembalang-Semarang, 50275, Telp/fax: (024)7460058/(024)76480675
(2) Chemical Engineering Department, Faculty of Engineering, Diponegoro University, Jl. Prof. Sudarto, Tembalang-Semarang, 50275, Telp/fax: (024)7460058/(024)76480675
(3) Chemical Engineering Department, Faculty of Engineering, Diponegoro University, Jl. Prof. Sudarto, Tembalang-Semarang, 50275, Telp/fax: (024)7460058/(024)76480675
(4) Chemical Engineering Department, Faculty of Engineering, Diponegoro University, Jl. Prof. Sudarto, Tembalang-Semarang, 50275, Telp/fax: (024)7460058/(024)76480675
(*) Corresponding Author

Abstract


The presence of acetyl group in the backbone of water-soluble glucomannan is responsible for its solubility. This solubility requires being modified to support glucomannan application as an encapsulant. Removing the group by deacetylation reduces the solubility. This work was aims to study simultaneous effect of temperature and time of deacetylation on glucomannan physicochemical properties. The deacetylation was conducted in ethanol using Na2CO3 at various times (2, 4, 8, 16, 24 and 28 h) and temperatures (room temperature, 40, 50, and 60°C). The deacetylated samples were subject to degree of deacetylation (DD) as well as solubility and swelling analysis in pH 1.2 and 6.8. DD was in positive correlation with deacetylation time and temperature. The solubility of the deacetylated glucomannan at both pHs decreased along with the deacetylation time. A reverse trend was found for swelling determination at both pHs. Increasing deacetylation temperature showed a positive impact in swelling determination but not occuring on the solubility. Interestingly, the swelling and solubility were lower at pH 1.2 than those at pH 6.8. These results showed physicochemical of deacetylated glucomannan was pH sensitive, hence have a potency as an excipient of controlled-release drug delivery system.

Keywords


deacetylation, Na2CO3, glucomannan, solubility, swelling

Full Text:

PDF


References

  1. Beasley,D.E., Koltz,A.M., Lambert,J.E., Fierer,N.,  Dunn,R.R.(2015).The Evolution  of  Stomach  Acidity  and  Its Relevance to the Human Microbiome,PLoS one,10(7), pp 1 -12.
  2. Chen,  J.,  Li,  J.,  and  Li,  B.  (2011). Identification  of  molecular  driving forces involved in the gelation of konjac glucomannan  :  Effect  of  degree  of deacetylation    on    hydrophobic association, Carbohydrate  Polymers, 86(2), pp 865 -871.
  3. Cho, Y.W., Jang, J., Park, C.R., and Ko, S.W. (2000). Preparation and Solubility in  Acid  and  Water  of  Partially Deacetylated Chitins, Biomacromol, 1, pp 609 -614.
  4. Daramola,  B.,andOsanyinlusi,  S.a.(2006). Investigation on modification of cassava starch using active components of ginger roots ( Zingeiber officianale Roscoe),African    Journal    of Biotechnology, 5 (10), pp917-920.
  5. Du, X., Li, J., Chen, J., and Li, B.(2012).Effect of Degree of Deacetylation on Physicochemical    and    Gelation Properties  of  Konjac  Glucomannan,Food Research International, 46 (1), pp 78–270
  6. Gao, S., and Nishinari, K. (2004). Effect of  Deacetylation  Rate  on  Gelation Kinetics  of  Konjac  Glucomannan, Colloids and Surfaces. B, Biointerfaces, 38 (3-4), pp 49 -241
  7. Harmayani, E., Aprilia, V., and Marsono, Y.   (2014).   Characterization   of glucomannan  from  Amorphophallus oncophyllus and its prebiotic activity in vivo, Carbohydrate  Polymers,  112,  pp 475 -479
  8. Herranz, B., Clara,A.T., Solo-de-zaldívar,B., and Borderias,A.J. (2013). Influence of   Alkali   and   Temperature   on Glucomannan   Gels   at   High Concentration,LWT -Food Science and Technology,51 (2), pp 50-500
  9. Huang, Y., Chu, H., Huang, C., and Wu, W.(2015).  Alkali-Treated  Konjac Glucomannan Film as a Novel Wound Dressing,Carbohydrate Polymers,117, pp 87-778
  10. Jin, W., Mei, T., Wang, Y., Xu, W., Li, J., Zhou, B., and Li, B. (2014). Synergistic degradation of konjac glucomannan by alkaline   and   thermal   method, Carbohydrate Polymers,  99,  pp  270 -277
  11. Jin, W., Song, R., Xu, W., Wang, Y., Li, J., Shah,  B.R.,  Li,  Y.,  and  Li,  B.  (2015). Analysis   of   deacetylated   konjac glucomannan and xanthan gum phase separation  by  film  forming, Food Hydrocolloids, 48, pp 320 -326
  12. Li, J., Ye, T., Wu,X.,Chen,J.,Wang,S.,Lin, L., and Li, B.(2014). Preparation and Characterization  of Heterogeneous Deacetylated  Konjac  Glucomannan,Food Hydrocolloids,40, pp 9-15
  13. Pan, Z., Meng,J.,and Wang, Y. (2011). Particuology Effect  of  Alkalis  on Deacetylation of Konjac Glucomannan in   Mechano-Chemical   Treatment,Chinese Society of Particuology,9 (3), pp 69 -265
  14. Solo-de-zaldívar,   B.,   Tovar,   C.A., Borderías, A.J., and Herranz, B. (2014). Food   Hydrocolloids   Effect   of Deacetylation  on  the  Glucomannan Gelation   Process   for   Making Restructured  Seafood  Products,  Food Hydrocolloids, 35, pp 59 -68
  15. Takigami,  S. (2000). Handbook  of hydrocolloids,Cambridge: Wood-head Publishing,pp413-424.
  16. Wardhani, D.H., Abdullah, Azizah, A.N, and    Ananta,    M.Y.    (2016). Physicochemical    properties    of acetylated     glucomannan     of Amorphophallus   onchophillus   as excipient of drug controlled release, AIP Conference Proceedings, 1746, 020039
  17. Wardhani, D.H., Puspitosari, D., Ashidiq, M.A., Aryanti, N., and Prasetyaningrum, A.  (2017).  Effect  of  Deacetylation  on Functional Properties of Glucomannan,AIP  Conference  Proceedings,  1855, 030020
  18. Wen, X., Cao, X., Yin, Z., Wang, T., and Zhao,  C.  (2009).  Preparation  and characterization     of     konjac glucomannan –poly ( acrylic acid ) IPN hydrogels  for  controlled  release, Carbohydrate Polymers, 78 (2), pp 193 -198 
  19. Wen, X., Wang, T., Wang, Z., Li, L., and Zhao, C. (2008). Preparation of konjac glucomannan  hydrogels  as  DNA-controlled release matrix,  InternationalJournal  of  Biological  Macromolecules, 42, pp 256 -263
  20. Wenling,  C.,  Duohui,  J.,  Jiamou,  L., Yandao, G., Nanming, Z., and Xiufang, Z. (2005).  Effect  of  the  Degree  of Deacetylation on the Physicochemical Properties and Schwann Cell Affinity of Chitosan Films, Journal of Biomaterials Applications, 20, pp 157 –176
  21. Zhang, C., Chen, J., and Yang, F. (2014). Konjac  glucomannan,  a  promising polysaccharide     for     OCDDS, Carbohydrate Polymers, 104, pp 175 -181
  22. Zhang, T., Xue, Y., Li, Z., Wang, Y., and Xue, X.(2015). Effect of deacetylation of konjac glucomannan on Alaska Pollock surimi  gels  subjected  to  high-temperature  (120oC)  treatment,Food Hydrocolloids, 14, pp 125 -131



DOI: https://doi.org/10.22146/ajche.49541

Article Metrics

Abstract views : 71 | views : 46

Refbacks

  • There are currently no refbacks.