Removing Ethylene by Adsorption using Cobalt Oxide-Loaded Nanoporous Carbon

https://doi.org/10.22146/ajche.49542

Imam Prasetyo(1*), Nur Indah Fajar Mukti(2), Moh Fahrurrozi(3), Teguh Ariyanto(4)

(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Advanced Material and Sustainable Mineral Processing Research Group, Faculty of Engineering, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia
(2) Department of Chemical Engineering, Islamic University of Indonesia, 55584 Yogyakarta, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia
(4) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Advanced Material and Sustainable Mineral Processing Research Group, Faculty of Engineering, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Ethylene is naturally generated by climacteric fruits and can promote the ripening process faster. For effective long-distance transport and subsequent storage, removing ethylene from the storage environment has been of interest to suppress its undesirable effect. In this study, ethylene removal by an adsorptive method using cobalt-loaded nanoporous carbon is studied. Cobalt oxide-loaded carbon was prepared by incipient wetness method followed by calcination process at 200 °C under inert flow. Ethylene adsorption test was performed at 20, 30, and 40 °C using a static volumetric test. The results showed that cobalt oxide/carbon system has significant ethylene adsorption capacity up to 3.5 times higher compared to blank carbon. A higher temperature adsorption is more favorable for this chemisorption process. Ethylene uptake increases from 100 to 150 mL g-1adsorbent STP by increasing cobalt oxide loading on carbon from 10 to 30 wt.% Co. The highest uptake capacity of 6 mmol ethylene per gram adsorbent was obtained using 30 wt.% cobalt oxide. Therefore, ethylene adsorption by cobalt-loaded nanoporous carbon may represent a potential method in ethylene removal and it could serve as a basis for development of ethylene scavenging material.

Keywords


adsorption, cobalt–oxide, ethylene scavenger, porous carbon

Full Text:

PDF


References

  1. Abe,  K.,  Watada,  A.E.,  1991.  Ethylene Absorbent  to  Maintain  Quality  of Lightly   Processed   Fruits   and Vegetables. J. Food Sci. 56, 1589–1592. https://doi.org/10.1111/j.1365-2621.1991.tb08647.x
  2. Ariyanto,  T.,  Kern,  A.,  Etzold,  B.J.M., Zhang,  G.-R.,  2017a.  Carbide-derived carbon with hollow core structure and its performance as catalyst support for methanol        electro-oxidation. Electrochem.  commun.  82, 12–15. https://doi.org/10.1016/j.elecom.2017.07.010
  3. Ariyanto,  T.,  Zhang,  G.-R.,  Riyahi,  F., Gläsel,  J.,  Etzold,  B.J.M.,  2017b. Controlled  synthesis  of  core-shell carbide-derived carbons through in situ generated chlorine. Carbon N. Y. 115, 422–429. https://doi.org/10.1016/j.carbon.2017.01.032
  4. Biale, J.B., Young, R.E., Olmstead, A.J., 1953.  Fruit  respiration  and  ethylene production. Plant Physiol. 29, 168–174. https://doi.org/10.1104/pp.37.2.179
  5. Cao, J., Li, X., Wu, K., Jiang, W., Qu, G., 2015.  Preparation  of  a  novel  PdCl2-CuSO4-based   ethylene   scavenger supported by acidified activated carbon powder and its effects on quality and ethylene metabolism of broccoli during shelf-life. Postharvest Biol. Technol. 99, 50–57. https://doi.org/10.1016/j.postharvbio.2014.07.017
  6. Keller,  N.,  Ducamp,  M.N.,  Robert,  D., Keller, V., 2013. Ethylene removal and fresh product storage: A challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chem.                   Rev. https://doi.org/10.1021/cr900398v
  7. Martínez-Romero,   D.,   Bailén,   G., Serrano, M., Guillén, F., Valverde, J.M., Zapata, P., Castillo, S., Valero, D., 2007. Tools to maintain postharvest fruit and vegetable   quality   through   the inhibition of ethylene action: a review. Crit. Rev. Food Sci. Nutr. 47, 543–560. https://doi.org/10.1080/10408390600846390
  8. Prasetyo,    I.,    2000.    Kinetics characterization  of  hydrocarbons  on activated  carbon  with  new  constant molar flow and differential permeation techniques. University of Queensland.
  9. Prasetyo, I., Rochmadi, R., Wahyono, E., Ariyanto, T., 2017. Controlling synthesis of  polymer-derived  carbon  molecular sieve and its performance forCO2/CH4 separation.   Eng.   J.   21, 83–94. https://doi.org/10.4186/ej.2017.21.4.83
  10. Prasetyo,  I.,  Rochmadi,  Ariyanto,  T., Yunanto, R., 2013. Simple method to produce nanoporous carbon for various applications  by  pyrolysis  of  specially synthesized phenolic resin. Indones. J. Chem. 13, 95–100.
  11. Singh, R., Giri, S., 2014. Shelf-life study of Guava under active packaging: An experiment     with     potassium permanganate   salt   as   ethylene absorbent. J. Food Saf. Food Qual. 65, 32–39. https://doi.org/10.2376/0003-925X-65-32
  12. Sue-Aok,   N.,   Srithanratana,   T., Rangsriwatananon, K., Hengrasmee, S., 2010. Study of ethylene adsorption on zeolite NaY modified with group I metal ions.  Appl.  Surf.  Sci.  256, 3997–4002. https://doi.org/10.1016/j.apsusc.2010.01.065
  13. Thommes, M., Kaneko, K., Neimark, A. V.,  Olivier,  J.P.,  Rodriguez-Reinoso,  F., Rouquerol,  J.,  Sing,  K.S.W.,  2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87. https://doi.org/10.1515/pac-2014-1117
  14. Wills,  R.B.H.,  Warton,  M.A.,  2004. Efficacy  of  potassium  permanganate impregnated  into  alumina  beads  to reduce atmospheric ethylene. J. Amer. Soc. Hort. Sci. 129, 433–438



DOI: https://doi.org/10.22146/ajche.49542

Article Metrics

Abstract views : 44 | views : 40

Refbacks

  • There are currently no refbacks.