Synthesis of Ni/CaO-γ-Al2O3@Ru Core Shell via Micro-Emulsion Method for Bio-oil Steam Reforming of Empty Fruit Bunch

https://doi.org/10.22146/ajche.49546

Desi Riana Saputri(1*), Widodo Wahyu Purwanto(2)

(1) Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
(2) Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
(*) Corresponding Author

Abstract


Hydrogen production from bio-oil steam reforming plays an important role in the development of renewable hydrogen from biomass to produce the cleanest fuel. However, the existence of coke and low carbon conversion are problems that have been found in some studies. The purpose of this study was to reduce coke formation and to enhance carbon conversion by using core shell nanoparticle catalysts that could increase of surface area, support interaction and its catalytic activity for hydrogen production from bio-oil steam reforming of empty fruit bunch (EFB). Ni/CaO-γ-Al2O3@Ru core shells were prepared by CTAB/n-hexanol/n-hexane/water micro-emulsion system. The catalysts were characterized by means XRD, BET, FESEM-EDS and TEM. Bio-oil aqueous fraction was analyzed by using GC-MS. Carbon conversion and hydrogen yield by using Ni/CaO-γ-Al2O3@Ru core shell are resulted more 68.4 % and 18.6% than using Ni/CaO-γ-Al2O3 catalyst, respectively. The highest hydrogen yield by using Ni/CaO-γ-Al2O3@Ru core shell for steam reforming bio-oil is 5.6% in minute 10 with 0.07 g of coke deposit. The study concludes that the effect of Ni/CaO-γ-Al2O3@Ru core shell is more efficient in hydrogen production, carbon conversion and coke deposit compared to Ni/CaO-γ-Al2O3 catalyst

Keywords


bio-oil, core shell, hydrogen, micro-emulsion, Ni/CaO-γ-Al2O3@Ru, steam reforming

Full Text:

PDF


References

  1. Abdullah,  N.,  &  H.  Gerhauser.  (2008). Bio-oil    derived from    empty    fruit bunches, Fuel,87: 2606 –2613.
  2. Fu,  P.,  et  al.  (2014).  Investigation  on hydrogen    production    by    catalytic steam  reforming  of  maize  stalk  fast pyrolysis    bio-oil, Int.    J.    Hydrog.Energy.,39: 13962-13971.
  3. Gyger,  F.,  et  al.  (2014).  Pd@SnO2 and SnO2@Pd  core@shell  nanocomposite sensors, Part. Sys. Char.,31: 591-596.
  4. Hamelinck,  C.N.,  G.V.  Hooijdonk.,  & A.P.     Faaij     (2005).     Ethanol     from lignocellulosic      biomass:      techno-economic     performance     in     short, middle,     and     longterm., Biomass Bioenergy., 28:384-410.
  5. Hames, B.R., S.R. Thomas,  A.D. Sluiter, C.J.  Roth.,  &  D.W.  Templeton  (2003). Rapid  biomass  analysis,  new  tools  for compositional  analysis  of  corn  stover feedstocks  and  process  intermediates ethanol   production, Appl.   Biochem. Biotech., 16:105-8.
  6. Ishihara, A., E.W. Qian, I. N. Finahari, I. P Sutrina., & T. Kabe. (2005). Addition effect  of  ruthenium  on  nickel  steam reforming   catalysts, Fuel,   84:   1462-1468.
  7. Koo, K.Y., S. Lee., U. H. Jung., H. Roh & W.L.  Yoon.  (2013).  Syngas production via combined    steam    and    carbon dioxide  feforming  of   methane  over Ni-Ce/MgAl2O4catalysts        with enhanced     coke     resistance, Fuel Process. Technol., 119: 151 –157
  8. Majewski,   A.   J.,   J.   Wood.,   &   W. Bujalski.          (2013).          Nickel-silica core@shell    catalyst    for     methane reforming, Int.  J. Hydrog.Energy,38: 14531-14541.
  9. Meibod,  M.  P.  (2013). Bio-oil  wheat straw   and   hydrogen   from   aqueous phase  of  bio-oil,Thesis  Chemical  and Petroleum   Engineering   Department University of Calgary, Alberta.
  10. Mohanti,  M.  K.,  N.  Panigrahi,  &  A.  K. Pradhan.(2012).Non-edible  karanja biodiesel-asustainable   fuel   for   Cl engine,     International     Journal     of Engineering Research and Application, 2, 853-860.
  11. Pefia, M.A., Gomez, J.P & Fierro, J.L.G. (1996). New catalytic routes for syngas and hydrogen production, App. Catal., A,General 144: 7–57.
  12. Takanabe,   K.,   &   K.I.   Aika   (2004). Sustainable   hydrogen   from   biooil-steam  reforming  of  acetic  acid  as  a model  oxygenate, J.Catal.227,  101–108.
  13. Salehi,  E.,  F.  S.  Azad.,  T.    Harding  &  J. Abedi. (2011). Production of hydrogen bysteam  reforming  of  bio-oil  over Ni/Al2O3catalysts: effect of addition of promoter  and  preparation  procedure,Fuel Process.Technol,92: 2203-2210.
  14. Vagia,   E.   C.,   &   A.   A.   Lemonidou. (2008).    Hydrogen    production    via steam       reforming       of       bio-oil components  over  calcium  aluminate supported   nickel   and   noble   metal catalysts, App. Catal., A,351, 111-121.
  15. Valle,  B.,  A.  Remiro.,  A.T.  Aguayo.,  J. Bilbao.,   &   A.   G.   Gayubo.   (2013). Catalysts of Ni/α-Al2O3and  Ni/La2O3-αAl2O3for  hydrogen  production  by steam  reforming  of  bio-oil  aqueous fraction with pyrolytic lignin retention. Int. J. Hydrog.Energy,38: 1307-1318.
  16. Xiu,  S.,  & A.  Shahbazi.  (2012). Bio-oil production and upgrading research: A review. J.    Renew.Sustain.Energy Review,16, 4406-4414.
  17. Zhang, F., M. Wang., L. Zhu., S. Wang., J.    Zhou.,    &    Z.    Luo.    (2016).    A comparative  research  on  the  catalytic activity     of     La2O3and   γ-Al2O3supported   catalysts   for   acetic   acid steam    reforming, Int.    J.    Hydrog.Energy,42: 3667-3675



DOI: https://doi.org/10.22146/ajche.49546

Article Metrics

Abstract views : 46 | views : 18

Refbacks

  • There are currently no refbacks.