Biosynthesis and Kinetics of Silver Nanoparticles Formation by Reduction using Banana Kepok (Musa balbisiana) Peel Extract

https://doi.org/10.22146/ajche.49557

Wara Dyah Pita Rengga(1*), Dhimas Setiawan(2), Khosiatun Khosiatun(3)

(1) Chemical Engineering Department, Universitas Negeri Semarang, UNNES, Semarang, Indonesia
(2) Chemical Engineering Department, Universitas Negeri Semarang, UNNES, Semarang, Indonesia
(3) Chemical Engineering Department, Universitas Negeri Semarang, UNNES, Semarang, Indonesia
(*) Corresponding Author

Abstract


Biosynthesis and silver nanoparticles formation during the reduction of AgNO3
were carried out by using an aqueous peel extract of banana kepok (Musa balbisiana) as
a stabilizing agent. The formation of the stable silver nanoparticles with different
concentration of AgNO3 has resulted in mostly spherical particles. The Ultraviolet-Visible
spectrophotometer, Transmission Electron Microscopy, X-Ray Diffractometer were used
to characterize these biosynthesized silver nanoparticles. The spherical shaped
nanoparticles were uniformly distributed with the range diameter of 5 to 50 nm and the
particles were naturally crystallized with the crystal structure of the face-centered cubic
geometry. Additionally, the kinetics of the formation process of silver nanoparticles was
observed by the UV-Vis spectrophotometer. Based on the kinetic functions, the reduction
process of banana peel extract had a constant formation rate of the autocatalytic process
at 4.35 x 10-4
/s.


Keywords


peel extract, banana kapok, silver nanoparticle, kinetic of formation, biosynthesis

Full Text:

PDF


References

  1. Agama-Acevedoa, E., Sañudo-Barajasb, J.A., Vélez De La Rochab, R., González- Aguilarc, G.A., and Bello-Peréza, L.A. (2016) Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. Journal of Food, 14(1),117.
  2. Annamalai, J., & Nallamuthu, T. (2016). Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Applied Nanoscience 6, 259.
  3. Dauthal, P. and Mukhopadhyay, M. (2016) Noble Metal Nanoparticles: Plant- Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Industrial & Engineering Chemistry Research, 55(36), 9557.
  4. Gudikandula, K. and Maringanti, S.C. (2016) Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience , 11(9), 714.
  5. Ibrahim, H.M.M. (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences. 8, 265.
  6. Khan, P.U., Chen, Y., Khan, N.U., Khan, Z.U.H., Khan, A.U., Ahmad, A., Tahir, K., Wang, L., Khan, M.R., Wan, P. (2016) Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent. Journal of Photochemistry and Photobiology B: Biology, 164, 344.
  7. Krithiga, N., and Jayachitra, A., (2015) Green Synthesis of Silver Nanoparticles Using Leaf Extracts of Clitoria ternatea and Solanum nigrum and Study of Its Antibacterial Effect against Common Nosocomial Pathogens, Journal of Nanoscience, 928204, 1.
  8. Kuppusamy, P., Yusoff, M.M., Maniam, G.P., and Govindan, N. (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharmaceutical Journal. 24, 473.
  9. Logeswari, Sivagnanam Silambarasan, Jayanthi Abraham (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property Peter. Journal of Saudi Chemical Society. 19, 311.
  10. Madua, U., Prasertsit, K., Innachitra, P., Keatkhunboot, T. (2013). Predicting of Parameters Affecting on PE wax Powder Size Distribution and Shape in Atomization Process, Asean Journal of Chemical Engineering, 13(2),1.
  11. Mei, H.E., Leipold, M.D., Maecker, H.T. (2016) Platinum-conjugated antibodies for application in mass cytometry. Cytometry A. 89(3), 292.
  12. Mohammad, A.E. (2015) Green synthesis, antimicrobial and cytotoxic effect of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract. Asian Pacific Journal of Tropical Biomedicine 5(5), 382.
  13. Raza, M.A., Kanwal, Z., Rauf, A., Sabri, A.N., Riaz, S., Naseem, S. (2016) Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes. Nanomaterials, 6(4), 74.
  14. Satishkumar, M., Sneha, K., Won, S. W., Cho, C. W., Kim, S., and Yun, Y. S. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its antibacterial activity. Colloids and Surfaces, B: Biointerfaces, 73, 332.
  15. Singh, M., Harris-Birtill, DCC, Hanna, & G.B. Elson, D.S. (2015) Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review. Nanomedicine: Nanotechnology, Biology and Medicine, 11(8), 2083.
  16. Rengga, W.D.P., Chafidz, A., Sudibandriyo, M., Nasikin, M. (2017a). Silver nano-particles deposited on bamboo-based activated carbon for removal of formaldehyde, Journal of Environmetal Chemical Engineering, 5(2), 1657.
  17. Rengga, W.D.P., Yufitasari, A., Adi, W. (2017b). Synthesis of Silver Nanoparticles from Silver Nitrate Solution Using Green Tea Extract (Camelia sinensis) as Bioreductor, Jurnal Bahan Alam Terbarukan, 6 (1), 32.
  18. Vijayakumar, S., Krishnakumar, C., Arulmozhi, P., Mahadevan, S., and Parameswari, N. (2018). Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microbial Pathogenesis, 116, 44.



DOI: https://doi.org/10.22146/ajche.49557

Article Metrics

Abstract views : 4395 | views : 3751

Refbacks

  • There are currently no refbacks.


slot gacor

slot

slot gacor

slot

harum777

https://www.husavikgreenhostel.is/terms-conditions

situs toto

mpo slot

vadicasino

slot

sotong 88

slot88

SBCTOTO

slot777

naked link

slot gacor

Situs Gacor

Situs Slot777 Gacor

Kilau4D

Pusat4D

Pusat4D

Calon4D

Calon4D

Situs Depo 5K

Situs Deposit Qris 5000

Situs Deposit Qris 5000

slot gacor 88

bwo99 

mu138

https://www.shakespeare-navigators.com/hamlet/H47.html

vega168

RAJAVIGOR

Surga11

jogjatoto

jogjatoto

slot gacor

slot

togel online

Kilau4D

Pusat4D

Calon4D

Gaya4D

Gaya4D

calon4d

Racik198

https://recoveryemirate.com/

TEGUH777

slot gacor maxwin

neng4d

server Thailand

FAFA828

Slot

slot

nixtoto

slot pragmatic

slot gacor

situs slot gacor

idn poker

idn poker

idn poker

idn slot

kediritoto

Slot Gacor

Slot Gacor

Slot

slot gacor

royalplay

royal138

royal138

SITUS TOTO

slot gacor

rajavigor

https://www.egepalas.com.tr/

racik198

Situs gacor

sakti55

toto slot

kenahoki

naga15

multibet88

Joker81 Link Alternatif

owltoto

gayatoto

mogetoto

doritoto

rem4d

velbet4d

link slot gacor

slot gacor

slot88

mesinqq

slot

BOLA SBO