Amine-based Carbon Dioxide Absorption: The Ionic Strength Effect on the Monoethanolamine Protonation Constant at Temperatures from 313 to 333K

https://doi.org/10.22146/ajche.51832

Sholeh Ma'mun(1*), Panji Kumala Setiawan(2), Egip Indrayanto(3)

(1) Department of Chemical Engineering, Universitas Islam Indonesia, Yogyakarta 55501, Indonesia
(2) Department of Chemical Engineering, Universitas Islam Indonesia, Yogyakarta 55501, Indonesia
(3) Department of Chemical Engineering, Universitas Islam Indonesia, Yogyakarta 55501, Indonesia
(*) Corresponding Author

Abstract


Amine-based absorption has been extensively used for carbon dioxide (CO2) removal processes, such as CO2 absorption from flue gas as well as from natural gas. As a reactive system in which the chemical reaction, as well as mass transfer, occur simultaneously, an experimental determination of equilibrium reaction constants, e.g. acid dissociation/protonation constant (Ka), is, therefore, necessary to be conducted. This study aims to evaluate the ionic strength effect from 0.06 to 6.0 m (mol/kg water) on the Ka value of monoethanolamine (MEA) at temperatures between 313 and 333K. The experimental results indicate that the pKa values tend to be increasing as the ionic strength increases. This is contradicting to the temperature effect where the pKa values tend to be decreasing as the temperature increases. Furthermore, the extended Debye-Hückel formulation was implemented to predict the species activity coefficients.


Keywords


Absorption, activity coefficient, carbon dioxide, monoethanolamine, protonation constant

Full Text:

PDF


References

  1. Alstom. (2007). “Chilled ammonia-based wet scrubbing for post-combustion CO2 capture”, DOE/NETL report No. 401/021507
  2. Debye, P., Hückel, E. (1923). “The theory of electrolyte”, Physikalische Zeitschrift, 24, 185‒206
  3. Hartono, A., Saeed, M., Kim, I., Svendsen, H. F. (2014). “Protonation constant (pKa) of MDEA in water as function of temperature and ionic strength”, Energy Procedia, 63, 1122‒1228
  4. Hoff, K. A., da Silva, E. F., Kim, I., Grimstvedt, A., Ma’mun, S. (2013). “Solvent development in post combustion CO2 capture ‒ Selection criteria and optimization of solvent performance, cost and environmental impact”, Energy Procedia, 37, 292‒299
  5. Idem, R., Wilson, M., Tontiwachwu-thikul, P., Chakma, A., Veawab, A., Aroonwilas, A., Gelowitz, D. (2006). “Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the Boundary Dam CO2 Capture Demonstration Plant”, Ind. Eng. Chem. Res., 45, 2414‒2420
  6. Iliuta, I., Larachi, F. (2018). “CO2 and H2S absorption by MEA solution in packed-bed columns under inclined and heaving motion conditions - Hydrodynamics and reactions performance for marine applications”, Int. J. Greenh. Gas Con., 79, 1‒13
  7. Jou, F. Y., Mather, A. E., Otto, F. D. (1995). “The solubility of CO2 in a 30 mass percent monoethanolamine solution”, Can. J. Chem. Eng., 73, 140‒147
  8. Kielland, J. (1937). “Individual activity coefficients of ions in aqueous solutions”, J. Am. Chem. Soc. 59, 1675‒1678
  9. Knuutila, H., Aronu, U. E., Kvamsdal, H. M., Chikukwa, A. (2011). “Post combustion CO2 capture with an amino acid salt”, Energy Procedia, 4, 1550‒1557
  10. Kohl, A. L., Nielsen, R. B. (1997). Gas Purification 5th ed., Gulf Publishing Company, Houston, Texas, U. S. A.
  11. Li, Y. G., Mather, A. E. (1994). “Correlation and prediction of the solubility of carbon dioxide in a mixed alkanolamine solution”, Ind. Eng. Chem. Res., 33, 2006‒2015
  12. Liu, Y., Zhang, L., Watanasiri, S. (1999). “Representing vapor-liquid equilib-rium for an aqueous MEA-CO2 system using the Electrolyte Nonrandom–Two–Liquid Model”, Ind. Eng. Chem. Res., 38, 2080‒2090
  13. Lu, Y., Ye, X., Zhang, A., Khodayari, A., Djukadi, T. (2011). “Development of a carbonate absorption-based process for post-combustion CO2 capture: the role of biocatalyst to promote CO2 absorption rate”, Energy Procedia, 4 1286‒1293
  14. Ma’mun, S., Amelia, E., Rahmat, V., Alwani, D. R., Kurniawan, D. (2017a). “Design of protonation constant measurement apparatus for carbon dioxide capturing solvents”, IOP Conf. Ser., Mater. Sci. Eng., 162, 012003
  15. Ma’mun, S., Chafidz, A., Indrayanto, E., Setiawan, P. K. (2019). “The effect of ionic strength on protonation constant of monoethanolamine in water at 303K”, J. Phys.: Conf. Ser., 1295, 012017
  16. Ma’mun, S., Dindore, V. Y., Svendsen, H. F. (2007a). “Kinetics of the reaction of carbon dioxide with aqueous solutions of 2-((2-aminoethyl)amino) ethanol”, Ind. Eng. Chem. Res., 46 385‒394
  17. Ma’mun, S., Jakobsen, J. P., Svendsen, H. F., Juliussen, O. (2006). “Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass % 2-((2-aminoethyl)amino)ethanol solution”,  Ind. Eng. Chem. Res., 45, 2505‒2512
  18. Ma’mun, S., Kamariah, Sukirman, Kurniawan, D., Amelia, E., Rahmat, V., Alwani, D. R. (2017b). “Experimental determination of monoethanolamine protonation constant and its temperature dependency”, MATEC Web of Conf., 101, 02001
  19. Ma'mun, S., Kim, I. (2013). “Selection and characterization of phase-change solvent for carbon dioxide capture: precipitating system”, Energy Procedia, 37, 331‒339
  20. Ma’mun, S., Sukirman, Alel, A. E., Hasanah, M. (2018a). “Building electricity consumption as an indicator of indirect carbon dioxide emissions”, IOP Conf. Ser., Mater. Sci. Eng., 358,  012012
  21. Ma’mun, S., Svendsen, H. F., Bendiyasa, I M. (2018b). “Amine-based carbon dioxide absorption: evaluation of kinetic and mass transfer parameters”, J. Mech. Eng. Sci., 12, 4088‒4097
  22. Ma’mun, S., Svendsen, H. F., Hoff, K. A., Juliussen, O. (2007b). “Selection of new absorbents for carbon dioxide capture”, Energ. Convers. Manage., 48, 251‒258
  23. Manov, G. G., Bates, R. G., Hamer, W. J., Acree, S. F. (1943). “Values of the constants in the Debye–Hückel equation for activity coefficients”, J. Am. Chem. Soc., 65, 1765‒1767
  24. Sønderby, T. L., Carlsen, K. B., Fosbøl, P. L., Kiørboe, L. G., von Solms, N. (2013). “A new pilot absorber for CO2 capture from flue gases: Measuring and modelling capture with MEA solution”, Int. J. Greenh. Gas Con., 12, 181‒192
  25. Wang, J., Deng, S., Sun, T., Xu, Y., Li, K., Zhao, J. (2019). “Thermodynamic and cycle model for MEA-based chemical CO2 absorption”, Energy Procedia, 158, 4941‒4946



DOI: https://doi.org/10.22146/ajche.51832

Article Metrics

Abstract views : 681 | views : 669

Refbacks

  • There are currently no refbacks.