Optimization of Anthocyanin Extraction from Cockspur Coral (Erythrina Crista-Galli L.) Petals with Microwave-Assisted Extraction (MAE) using Response Surface Methodology

https://doi.org/10.22146/ajche.63393

Astrilia Damayanti(1*), Bayu Triwibowo(2), Megawati Megawati(3), Miftahuddin Azhari(4), Sandra Anggita Fadriana(5)

(1) Department of Chemical Engineering, Faculty of Engineering,Universitas Negeri Semarang, Bld. E1, Sekaran Campus, Gunungpati, Semarang, Indonesia
(2) Department of Chemical Engineering, Faculty of Engineering,Universitas Negeri Semarang, Bld. E1, Sekaran Campus, Gunungpati, Semarang, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering,Universitas Negeri Semarang, Bld. E1, Sekaran Campus, Gunungpati, Semarang, Indonesia
(4) Department of Chemical Engineering, Faculty of Engineering,Universitas Negeri Semarang, Bld. E1, Sekaran Campus, Gunungpati, Semarang, Indonesia
(5) Department of Chemical Engineering, Faculty of Engineering,Universitas Negeri Semarang, Bld. E1, Sekaran Campus, Gunungpati, Semarang, Indonesia
(*) Corresponding Author

Abstract


Cockspur coral (Erythrina crista-galli L) petals are flowers that contain anthocyanins and active compounds of flavonoids and tannins. This study aims to determine the optimum conditions for the anthocyanin extraction process of cockspur coral petals using Microwave-Assisted Extraction (MAE), analyzed through the Response Surface Method (RSM). This process uses ethanol-hydrochloric acid solvents and a Box-Behnken experimental design involving three factors, namely the solvent ratios (w/v) (1:5, 1:15, and 1:25), microwave powers (300, 450, and 600 watts), and extraction times (3, 9, and 15 minutes). As a result, the second-order polynomial model was enhanced and sufficient to explain the variation of the data that denoted the significant correlation with the independent variables and the response. Derringer's desired function methodology was used for optimizing studies and generated ideal conditions for each or combined an independent variable.  The optimum anthocyanin extract of 5.82 mg/L was obtained at a power condition of 325,5 Watts, an extraction time of 3.05 minutes, and a solvent ratio of 20.5. Meanwhile, the operating conditions at a power of 310.8 Watts, a time of 14.94 minutes, and a solvent ratio of 24.96 resulted in the optimum color intensity (IC) of 1040.26. In the meantime, the optimum antioxidant activity was obtained at a power of 585.97 Watts, a time of 4.93 minutes, and a solvent ratio of 5.43 with IC50 of 0.115.

Keywords


Anthocyanins, Cockspur coral, Microwave-Assisted Extraction, Optimization

Full Text:

PDF


References

  1. Adaku, C., Skaar, I., Byamukama, R., Jordheim, M., & Andersen, Ø. M. (2020). "Anthocyanin Profile and Antioxidant Property of Anti-asthma Flowers of Cordyline terminalis (L.) Kunth (Agavaceae)," Nat. Prod. Commun., 15(5), 1–7.
  2. Akhtar, I., Javad, S., Ansari, M., Ghaffar, N., & Tariq, A. (2020). "Process optimization for microwave-assisted extraction of Foeniculum vulgare Mill using response surface methodology," J. King Saud Univ. Sci., 32(2), 1451–1458.
  3. Al-dhabi, N. A., & Ponmurugan, K. (2020). "Microwave-Assisted Extraction and Characterization of Polysaccharide from Waste Jamun Fruit Seeds," Inter. J. Biol. Macromol., 152, 1157–1163.
  4. Alhakmani, F., Kumar, S., & Khan, S. A. (2013). "Estimation of total phenolic content, in–vitro antioxidant and anti–inflammatory activity of flowers of Moringa oleifera," Asian Pac. J. Trop. Biomed., 3(8), 623-627.
  5. Arroy, J. D. V., Espinosa, H. R., Guevara, J. J. L., Guevara, M. L. L., Carranza, P. H., Sosa, R. A., & Velasco, C. E. O. (2017). "Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel," Czech J. Food Sci., 35(No. 5), 456–465.
  6. Benvenuti, S., Bortolotti, E., & Maggini, R. (2016). "Antioxidant power, anthocyanin content and organoleptic performance of edible flowers," Sci. Hortic., 199, 170–177.
  7. Cassol, L., Rodrigues, E., & Norena, C. P. Z. (2019). "Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave assisted extraction," Ind. Crops Prod., 133, 168–177.
  8. Chan, C. H., Yusoff, R., & Ngoh, G. C. (2014a). "Optimization of microwave-assisted extraction based on absorbed microwave power and energy," Chem.l Eng. Sci., 111, 41–47.
  9. Chan, C. H., Yusoff, R., & Ngoh, G. C. (2014b). "Modeling and kinetics study of conventional and assisted batch solvent extraction," Chem. Eng. Res. Des., 92(6), 1169-1186.
  10. Chen, S., Meng, X., Wang, Y., & Sun, X. (2018). "Antioxidant activity and optimisation of ultrasonic-assisted extraction by response surface methodology of aronia melanocarpa anthocyanins," Matrix Sci. Pharma (MSP), 2(1), 6–9.
  11. Cortez, R., Luna-Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. (2017). "Natural pigments: stabilization methods of anthocyanins for food applications," Compr. Food Sci. Food Saf., 16(1), 180–198.
  12. Damayanti, A., Megawati, Mulyani, N. K. C., & Alvionita, E. A. (2020). "The effect of differences of acid solution in dadap merah flower (erythrina crista-galli) extraction using microwave assisted extraction method," J. Chem. Proc. Eng., 5(2655), 33–39.
  13. David, J., Arroy, V., Ruiz-espinosa, H., Luna-guevara, J. J., & Ochoa-velasco, C. E. (2017). "Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of renealmia alpinia (rottb.) maas peel," Czech J. Food Sci., 35,456–465.
  14. Ekici, L., Simsek, Z., Ozturk, I., Sagdic, O., & Yetim, H. (2014). "Effects of temperature, time, and pH on the stability of anthocyanin extracts: Prediction of total anthocyanin content using nonlinear models," Food Anal. Methods, 7(6), 1328-1336.
  15. Enciso, P., Decoppet, J. D., Grätzel, M., Wörner, M., Cabrerizo, F. M., & Cerdá, M. F. (2017). "A cockspur for the DSS cells: Erythrina crista-galli sensitizers," Spectrochim. Acta A Mol. Biomol. Spectrosc., 176, 91–98.
  16. Farzaneh, V., & Carvalho, I. S. (2017). "Modelling of microwave assisted extraction (MAE) of anthocyanins (TMA)," J. Appl. Res. Med. Aromat. Plantss, 6, 92-100.
  17. Hutabarat, R. P., Xiao, Y. D., Wu, H., Wang, J., Li, D. J., & Huang, W. Y. (2019). "Identification of Anthocyanins and Optimization of their extraction from rabbiteye blueberry fruits in nanjing," J. Food Qual., 1–10.
  18. Jafari, S. M., Khazaei, K. M., & Assadpour, E. (2019). "Production of a natural color through microwave‐assisted extraction of saffron tepal’s anthocyanins," Food Sci. Nutr., 7, 1438–1445.
  19. Kazan, A., Sevimli-Gur, C., Yesil-Celiktas, O., & Dunford, N. T. (2016). Investigating anthocyanin contents and in vitro tumor suppression properties of blueberry extracts prepared by various processes. European Food Research and Technology, 242(5), 693-701.
  20. Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). "Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits," Food Nutr. Res., 61(1).1361779.
  21. Mahardika, R. G., & Roanisca, O. (2019). "Microwave-assisted extraction of polyphenol content from leaves of tristaniopsis merguensis," ASEAN J. Chem. Eng., 19(2), 110–119.
  22. Maran, J. P., Manikandan, S., Nivetha, C. V., & Dinesh, R. (2017). "Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L . fruit peel using central composite face centered response surface design," Arab. J. Chem., 10, S1145–S1157.
  23. Maran, J. P., Manikandan, S., Thirugnanasambandham, K., Nivetha, C. V., & Dinesh, R. (2013). "Box–Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide," Carbohydr.Polym., 92(1), 604–611.
  24. Mohamed, K., Gibriel, A. Y., Rasmy, N. M. H., & Abusalem, F. M. (2016). "Extraction of anthocyanin pigments from evaluation of their antioxidant activity Hibiscus sabdariffa L. and evaluation of their antioxidant activity," Middle East J. Appl. Sci, 6(4), 856-866.
  25. Pap, N., Beszédes, S., Pongrácz, E., Myllykoski, L., Gábor, M., Gyimes, E., Hodúr, C. & Keiski, R. L. (2013). "Microwave-assisted extraction of anthocyanins from black currant marc," Food Bioproc. Technol., 6(10), 2666-2674.
  26. Ramos, M., Jimenez, A., & Garrigos, M. C. (2019). "Il-based advanced techniques for the extraction of value-added compounds from natural sources and food by-products," Trends Analyt Chem., 119, 115616.
  27. Richhariya, G., Kumar, A., Tekasakul, P., & Gupta, B. (2017). "Natural dyes for dye-sensitized solar cell: A review," Renew. Sust. Energ. Rev., 69(November 2016), 705–718.
  28. Saati, E. A. (2015). "Anthocyanin Pigment Identification of Batu Local Rose Flower as A Natural Colorant to Replace Harmful Rhodamin B Colorant," Int. J. Sci. Eng. Res., 6(4), 327–329.
  29. Sadeghi, A., Hakimzadeh, V., & Karimifar, B. (2017). "Microwave assisted extraction of bioactive compounds from food : a review," Int. J. Food Sci. Nutr. Eng., 7(1), 19–27.
  30. Sofyan, N., Ridhova, A., Pramono, K. R., Yuwono, A. H., & Udhiarto, A. (2018). "Visible light absorption and photo-sensitizing characteristics of natural dye extracted from mangosteen pericarps using different solvents," Int. J. Adv. Sci. Eng. Inf. Technol., 8(5), 2059-2064.
  31. Sommer, S., & Cohen, S. D. (2018). "Comparison of different extraction methods to predict anthocyanin concentration and color characteristics of red wines," Fermentation, 4(2), 39.
  32. Xiaokang, W., Lyng, J. G., Brunton, N. P., Cody, L., Jacquier, J.-C., Harrison, S. M., & Papoutsis, K. (2020). "Monitoring the effect of different microwave extraction parameters on the recovery of polyphenols from shiitake mushrooms : Comparison with hot-water and organic-solvent extractions," Biotechnol. Reports, 27, e00504.



DOI: https://doi.org/10.22146/ajche.63393

Article Metrics

Abstract views : 2970 | views : 2106

Refbacks

  • There are currently no refbacks.


ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.