A Kinetic Study of Manganese Leaching from Low-Grade Psilomelane Ore by Acetic-Tannic Acid Lixiviant


Widya Aryani(1), Astria Gesta Anggraini(2), Fathan Bahfie(3), Ulin Herlina(4), Muhammad Al Muttaqii(5), Erik Prasetyo(6*)

(1) Research Unit for Mineral Technology, National Research and Innovation Agency
(2) Research Unit for Mineral Technology, National Research and Innovation Agency
(3) Research Unit for Mineral Technology, National Research and Innovation Agency
(4) Research Unit for Mineral Technology, National Research and Innovation Agency
(5) Research Center for Chemistry, National Research and Innovation Agency
(6) Department of Chemical Engineering, Norwegian University of Science and Technology
(*) Corresponding Author


Kinetic leaching of psilomelane using tannic acid as reductant and acetic acid as an acidic modifier is investigated in terms of tannic acid and acetic acid concentration, solid-liquid ratio, particle size and temperature. Kinetic modelling using three models: shrinking core, shrinking particle, and diffusion-interface transfer model revealed that at room temperature leaching (30 °C), experimental data are best modelled using diffusion-interface transfer model, indicating the dissolution of Mn is more affected by reaction rate among reactants and their concentration in bulk volume rather than by transfer across the boundary layer. At higher temperatures (≥ 50 °C), the shrinking particle model fits the experimental data best, suggesting the prominence of the diffusion process boundary layer. The apparent activation energy obtained at two temperatures were 13.1 and 52.7 kJ/mol for lower and higher temperatures. Plot between rate constant and concentration yields reaction order to be 1.28 for tannic acid and 0.73 for acetic acid. A semi-empirical model for each temperature range is proposed to describe the overall manganese leaching efficiency.


reductive leaching; manganese; psilomelane; tannic acid; acetic acid; kinetic

Full Text:



  1. Al-Anber, M.A., Al-Momani, I.F., Zaitoun, M.A., Al-Qaisi, W. (2020). "Inorganic silica gel functionalized tris(2-aminoethyl)amine moiety for capturing aqueous uranium (VI) ion", J. Radioanal. Nucl. Chem., 325, 605-623. doi:10.1007/s10967-020-07270-x
  2. Andini, D.T., Prasetyo, E., Qudus, H.I., (2020, November 19-20). “Oxidative fusion and alkaline leaching for manganese extraction from low grade silicate ore”, 4th International Seminar on Metallurgy and Materials (ISMM2020), Tangerang Selatan, Indonesia. https://doi.org/10.1063/5.0060058
  3. Azizi, D., Shafaei, S.Z., Noaparast, M., Abdollahi, H. (2012). "Modeling and optimization of low-grade Mn bearing ore leaching using response surface methodology and central composite rotatable design", Trans. Nonferrous Met. Soc. China, 22(9), 2295-2305. doi:10.1016/S1003-6326(11)61463-5
  4. Biswas, R.K., Karmakar, A.K., Kumar, S.L., (2016). "Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose". Waste Manag., 51, 174-181. doi:10.1016/j.wasman.2015.11.002
  5. Buzatu, M., Sǎceanu, S., Petrescu, M.I., Ghica, G. V., Buzatu, T. (2014). "Recovery of zinc and manganese from spent batteries by reductive leaching in acidic media". J. Power Sources, 247, 612-617. doi:10.1016/j.jpowsour.2013.09.001
  6. Cantu, Y., Remes, A., Reyna, A., Martinez, D., Villarreal, J., Ramos, H., Trevino, S., Tamez, C., Martinez, A., Eubanks, T., Parsons, J.G. (2014). "Thermodynamics, kinetics, and activation energy studies of the sorption of chromium(III) and chromium(VI) to a Mn3O4 nanomaterial". Chem. Eng. J., 254, 374-383. doi:10.1016/j.cej.2014.05.110
  7. Corathers, L.A. (2019). Manganese - 2015 [Advance Release], US Geological Survey.
  8. Deng, L., Qu, B., Su, S. jun, Ding, S. lan, Sun, W. yi, (2019). "Separation of Manganese from Iron in the SO2 Reductive Leaching Iron-Rich Pyrolusite Ore: Leaching Mechanism and Kinetics", Arab. J. Sci. Eng., 44, 5335-5344. doi:10.1007/s13369-018-3587-2
  9. Dickinson, C.F., Heal, G.R., (1999). "Solid-liquid diffusion controlled rate equations". Thermochim. Acta, 340-341, 89-103. doi:10.1016/s0040-6031(99)00256-7
  10. El Hazek, M.N., Gabr, A.A. (2016). "Dissolution of Manganese from Polymetallic Material Using Sulfuric-Oxalic Acid Medium". Am. J. Anal. Chem., 7(5), 469-477. doi:10.4236/ajac.2016.75044
  11. Gan, J., Cui, J., Li, X., Muhammad, Y., Wang, Y., Su, H. (2018). "Kinetics of manganese leaching from an iron-rich manganese dioxide ore with bagasse pith as a reductant". New J. Chem., 42, 20144-20151. doi:10.1039/c8nj03875a
  12. Guo, H., Yu, H. zhao, Zhou, A. an, Lu, M. hua, Wang, Q., Kuang, G., Wang, H. Dong. (2019). "Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium". Trans. Nonferrous Met. Soc. China, 29(2), 407-415. doi:10.1016/S1003-6326(19)64950-2
  13. Levenspiel, O. (1999). Chemical reaction engineering. John Wiley & Sons, USA.
  14. Lin, Q. quan, Gu, G. hua, Wang, H., Zhu, R. feng, Liu, Y. cai, Fu, J. Gang. (2016). "Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching". Int. J. Miner. Metall. Mater., 23(5), 491-500. doi:10.1007/s12613-016-1260-x
  15. Lu, Y., Ma, H., Huang, R., Yuan, A., Huang, Z., Zhou, Z. (2015). "Reductive Leaching of Low-Grade Pyrolusite with Formic Acid". Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 46, 1709-1715. doi:10.1007/s11663-015-0380-4
  16. Momade, F.W.Y., Momade, Z.G. (1999). "Reductive leaching of manganese oxide ore in aqueous methanol-sulphuric acid medium". Hydrometallurgy, 51(1), 103-113. doi:10.1016/s0304-386x(98)00077-2
  17. Moosakazemi, F., Ghassa, S., Mohammadi, M.R.T. (2019). "Environmentally friendly hydrometallurgical recovery of tin and lead from waste printed circuit boards: Thermodynamic and kinetics studies". J. Clean. Prod., 228, 185-196. doi:10.1016/j.jclepro.2019.04.024
  18. Pagnanelli, F., Furlani, G., Valentini, P., Vegliò, F., Toro, L. (2004). "Leaching of low-grade manganese ores by using nitric acid and glucose: Optimization of the operating conditions". Hydrometallurgy, 75(1-4), 157-167. doi:10.1016/j.hydromet.2004.07.007
  19. Prasetyo, E., Anderson, C., Nurjaman, F., Al Muttaqii, M., Handoko, A.S., Bahfie, F., Mufakhir, F.R., (2020). "Monosodium glutamate as selective lixiviant for alkaline leaching of zinc and copper from electric arc furnace dust". Metals, 10(5), 644-657. doi:10.3390/met10050644
  20. Prasetyo, E., Purwaningsih, E., Astuti, W. (2019). "Selective-Reductive Leaching of Manganese from Low-Grade Manganese Ore Using Tannic Acid as Reductant". Mining, Metall. Explor. 36(5), 1003-1012. doi:10.1007/s42461-019-00115-6
  21. Sinha, M.K., Purcell, W., Van Der Westhuizen, W.A. (2020). "Recovery of manganese from ferruginous manganese ore using ascorbic acid as reducing agent". Miner. Eng., 154, 106406. doi:10.1016/j.mineng.2020.106406
  22. Sun, D., Xin, G., Yao, L., Yang, L., Jiang, X., Jiang, W. (2020). "Manganese leaching in high concentration flue gas desulfurization process with semi-oxidized manganese ore". Chinese J. Chem. Eng., 28(2), 571-578. doi:10.1016/j.cjche.2019.09.006
  23. Sun, Y., Fu, G., Jiang, L. (2018). "Reductive leaching of low-grade manganese oxide ores using pretreated straw as reductant". Process. Extr. Metall. Trans. Inst. Min. Metall., doi:10.1080/25726641.2018.1505210
  24. Trojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I., Kulisa, K. (2018). "Advanced Oxidation/Reduction Processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) – A review of recent advances". Chem. Eng. J. 336, 170-199. doi:10.1016/j.cej.2017.10.153
  25. Xiong, S., Li, X., Liu, P., Hao, S., Hao, F., Yin, Z., Liu, J. (2018). "Recovery of manganese from low-grade pyrolusite ore by reductively acid leaching process using lignin as a low cost reductant". Miner. Eng., 125, 126-132. doi:10.1016/j.mineng.2018.06.003
  26. Xue, J., Zhong, H., Wang, S., Li, C., Li, J., Wu, F. (2016). "Kinetics of reduction leaching of manganese dioxide ore with Phytolacca americana in sulfuric acid solution Kinetics of reduction leaching of manganese dioxide ore". J. Saudi Chem. Soc., 20(4), 437-442. doi:10.1016/j.jscs.2014.09.011
  27. Zhang, Y. bo, Zhao, Y., You, Z. xiong, Duan, D. xian, Li, G. hui, Jiang, T. (2015). "Manganese extraction from high-iron-content manganese oxide ores by selective reduction roasting-acid leaching process using black charcoal as reductant". J. Cent. South Univ., 22, 2515-2520. doi:10.1007/s11771-015-2780-7
  28. Zheng, F., Zhu, H., Luo, T., Wang, H., Hou, H. (2020). "Pure water leaching soluble manganese from electrolytic manganese residue: Leaching kinetics model analysis and characterization". J. Environ. Chem. Eng., 8(4), 103916. doi:10.1016/j.jece.2020.10391

DOI: https://doi.org/10.22146/ajche.64285

Article Metrics

Abstract views : 1077 | views : 812


  • There are currently no refbacks.

ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.