Submerged Membrane Photo Reactor (SMPR) with Simultaneous Photo Degradation and TiO2 Catalyst Recovery for Efficient Dyes Removal
Dessy Ariyanti(1*), Filicia Wicaksana(2), Wei Gao(3)
(1) Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
(2) Department of Chemical & Materials Engineering, The University of Auckland, Auckland 1142, New Zealand
(3) Department of Chemical & Materials Engineering, The University of Auckland, Auckland 1142, New Zealand
(*) Corresponding Author
Abstract
In this study, a polyvinylidene difluoride (PVDF) hollow fiber membrane module incorporated with TiO2 was submerged into a photocatalytic reactor to create a hybrid photocatalysis with membrane separation process (a submerged membrane photoreactor, SMPR), for advanced dyes wastewater treatment. The SMPR performance was assessed by the degradation of single component Rhodamine B (RhB) and degradation of mixed dyes (RhB and Methyl orange (MO)) in a binary solution. Several operational parameters such as the amount of catalyst loading, permeate flux, and the effect of aeration were studied. Fouling tendency on the membrane was also investigated to determine the optimum operating conditions. The results show that the synergetic effect of the low catalyst loading and permeate flux creates the environment for optimum light penetration for high photocatalytic activity as the hybrid system with low catalyst loading (0.5 g/L) and 66 L/m2h of flux with aeration at 1.3 L/min has proven to increase the photocatalysis performance by 20% with additional catalyst recovery. In addition, applying the low catalyst loading and flux permeate with aeration brings minimal fouling problems.
Keywords
Full Text:
PDFReferences
- Ajmal, A., Majeed, I., Malik, R. N., Idriss, H., & Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Advances, 4(70), 37003-37026. doi:10.1039/C4RA06658H
- Ariyanti, D., Maillot, M., & Gao, W. (2018). Photo-assisted degradation of dyes in a binary system using TiO2 under simulated solar radiation doi://doi.org/10.1016/j.jece.2017.12.031
- Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997-3027. doi:10.1016/j.watres.2010.02.039
- Deutch, J. M., & Felderhof, B. U. (1973). Hydrodynamic effect in diffusion‐controlled reaction. The Journal of Chemical Physics, 59(4), 1669-1671. doi:10.1063/1.1680247
- Du, X., Qu, F., Liang, H., Li, K., Bai, L., & Li, G. (2017). Control of submerged hollow fiber membrane fouling caused by fine particles in photocatalytic membrane reactors using bubbly flow: Shear stress and particle forces analysis doi://doi.org/10.1016/j.seppur.2016.08.011
- Erdim, E., Soyer, E., Tasiyici, S., & Koyuncu, I. (2009). Hybrid photocatalysis/submerged microfi ltration membrane system for drinking water treatment. Desalination and Water Treatment, 9(1-3), 165-174. doi:10.5004/dwt.2009.767
- Horikoshi, S., Saitou, A., Hidaka, H., & Serpone, N. (2003). Environmental remediation by an integrated microwave/UV illumination method. V. thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-B under UV/vis radiation. Environmental Science & Technology, 37(24), 5813-5822. doi:10.1021/es030326i
- Jiang, L., Zhang, X., & Choo, K. (2017). Submerged microfiltration-catalysis hybrid reactor treatment: Photocatalytic inactivation of bacteria in secondary wastewater effluent doi://doi.org/10.1016/j.seppur.2017.01.018
- Kertèsz, S., Cakl, J., & Jiránková, H. (2014). Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment. Desalination, 343, 106-112. doi:10.1016/j.desal.2013.11.013
- Li, M., Lin, H., & Huang, C. (2009). Nanotechnostructured catalysts TiO2 nanoparticles for water purification. (pp. 43-92) American Society of Civil Engineers. doi:10.1061/9780784410301.ch03 Retrieved from http://dx.doi.org/10.1061/9780784410301.ch03
- López Fernández, R., Coleman, H. M., & Le-Clech, P. (2014). Impact of operating conditions on the removal of endocrine disrupting chemicals by membrane photocatalytic reactor. Environmental Technology (United Kingdom), 35(16), 2068-2074. doi:10.1080/09593330.2014.892539
- Luan, J., & Xu, Y. (2013). Photophysical property and photocatalytic activity of new Gd2InSbO7 and Gd2FeSbO7 compounds under visible light irradiation doi:10.3390/ijms14010999
- Meng, Y., Huang, X., Yang, Q., Qian, Y., Kubota, N., & Fukunaga, S. (2005). Treatment of polluted river water with a photocatalytic slurry reactor using low-pressure mercury lamps coupled with a membrane. Desalination, 181(1), 121-133. doi:10.1016/j.desal.2005.02.015
- Molinari, R., Argurio, P., & Palmisano, L. (2015). 7 - photocatalytic membrane reactors for water treatment. In A. Basile, & A. C. K. Rastogi (Eds.), Advances in membrane technologies for water treatment (pp. 205-238). Oxford: Woodhead Publishing. doi://dx.doi.org.ezproxy.auckland.ac.nz/10.1016/B978-1-78242-121-4.00007-1 Retrieved from http://www.sciencedirect.com.ezproxy.auckland.ac.nz/science/article/pii/B9781782421214000071
- Molinari, R., Lavorato, C., & Argurio, P. (2017). Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catalysis Today, 281, Part 1, 144-164. doi://dx.doi.org/10.1016/j.cattod.2016.06.047
- Mozia, S. (2010). Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Separation and Purification Technology, 73(2), 71-91. doi://dx.doi.org/10.1016/j.seppur.2010.03.021
- Nguyen, V., Tran, Q. B., Nguyen, X. C., Hai, L. T., Ho, T. T. T., Shokouhimehr, M., . . . Van Le, Q. (2020). Submerged photocatalytic membrane reactor with suspended and immobilized N-doped TiO2 under visible irradiation for diclofenac removal from wastewater. Process Safety and Environmental Protection, 142, 229-237. doi:https://doi.org/10.1016/j.psep.2020.05.041
- Ong, C. S., Lau, W. J., Goh, P. S., Ng, B. C., & Ismail, A. F. (2014). Investigation of submerged membrane photocatalytic reactor (sMPR) operating parameters during oily wastewater treatment process. Desalination, 353, 48-56. doi:10.1016/j.desal.2014.09.008
- Oppenheimer, N., & Stone, H. A. (2017). Effect of hydrodynamic interactions on reaction rates in membranes. Biophysical Journal, 113(2), 440-447. doi:10.1016/j.bpj.2017.06.013
- Sarasidis, V. C., Plakas, K. V., Patsios, S. I., & Karabelas, A. J. (2014). Investigation of diclofenac degradation in a continuous photocatalytic membrane reactor. influence of operating parameters. Chemical Engineering Journal, 239, 299-311. doi:10.1016/j.cej.2013.11.026
- Saravanan, R., Gracia, F., & Stephen, A. (2017). Basic principles, mechanism, and challenges of photocatalysis. In M. M. Khan, D. Pradhan & Y. Sohn (Eds.), Nanocomposites for visible light-induced photocatalysis (pp. 19-40). Cham: Springer International Publishing. doi:10.1007/978-3-319-62446-4_2 Retrieved from https://doi.org/10.1007/978-3-319-62446-4_2
- Sillanpää, M., Ncibi, M. C., & Matilainen, A. (2018). Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. Journal of Environmental Management, 208, 56-76. doi://doi.org/10.1016/j.jenvman.2017.12.009
- Stuart, B. H. (2004). Infrared spectroscopy : Fundamentals and applications. Hoboken: John Wiley & Sons, Incorporated. Retrieved from http://ebookcentral.proquest.com/lib/auckland/detail.action?docID=194354
- Vatanpour, V., Darrudi, N., & Sheydaei, M. (2020). A comprehensive investigation of effective parameters in continuous submerged photocatalytic membrane reactors by RSM. Chemical Engineering and Processing - Process Intensification, 157, 108144. doi:https://doi.org/10.1016/j.cep.2020.108144
- Vatanpour, V., Karami, A., & Sheydaei, M. (2017). Central composite design optimization of rhodamine B degradation using TiO2 nanoparticles/UV/PVDF process in continuous submerged membrane photoreactor doi://doi.org/10.1016/j.cep.2017.02.015
- Yan, S. C., Li, Z. S., & Zou, Z. G. (2010). Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir, 26(6), 3894-3901. doi:10.1021/la904023j
- Yoon, S. H. (2015). Membrane bioreactor processes: Principles and applications CRC Press. Retrieved from https://www.crcpress.com/Membrane-Bioreactor-Processes-Principles-and-Applications/Yoon/p/book/9781482255836
- Zangeneh, H., Zinatizadeh, A. A. L., Habibi, M., Akia, M., & Hasnain Isa, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26, 1-36. doi:10.1016/j.jiec.2014.10.043
- Zhang, W., Ding, L., Luo, J., Jaffrin, M. Y., & Tang, B. (2016). Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: A critical review doi://doi.org/10.1016/j.cej.2016.05.071
- Zheng, X., Wang, Q., Chen, L., Wang, J., & Cheng, R. (2015). Photocatalytic membrane reactor (PMR) for virus removal in water: Performance and mechanisms. Chemical Engineering Journal, 277, 124-129. doi:10.1016/j.cej.2015.04.117.
DOI: https://doi.org/10.22146/ajche.65952
Article Metrics
Abstract views : 2162 | views : 1367Refbacks
- There are currently no refbacks.
ASEAN Journal of Chemical Engineering (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.