Utilization of Whey Protein Isolate as CO2 Foam Stabilizer for Enhanced Oil Recovery


Mohamed Sasi Said(1*), Mohd Zaidi Jaafar(2), Shaziera Omar(3), Ali Mohamed Samin(4)

(1) Department of Petroleum Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
(2) Department of Petroleum Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
(3) Department of Petroleum Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
(4) Department of Petroleum Engineering, University of Zawia, Zawiya, Libya
(*) Corresponding Author


Understanding the fundamental aspects of foaming properties will influence its generation and stabilization at different concentrations of the critical aggregation concentration (CAC), foam volume stability, foam height, salinity influences, and crude oil CO2-foam stability. Carbon-Dioxide based enhanced oil recovery techniques are widely employed to extract additional oil from the reservoir. The adsorption of protein at the interfaces produces extremely viscoelastic layers with high viscosity. This research aims to investigate whether whey protein isolate (WPI) is a foaming agent that can be used to improve oil recovery. WPI lowers the interfaces’ surface tension, which also has a propensity to disclose and stabilize the interface by forming a viscoelastic network and directing to high surface moduli. Comparatively, the surface tension is lowered by sodium dodecyl sulfate (SDS) surfactants than the WPI, but they do not produce a high modulus interface. WPI is demonstrated to be a greater foam stabilizer in oil and various salt conditions than SDS foam. Adding sodium chloride (NaCl) increased the half-life and volume of foam more on WPI foam compared to SDS foam. SDS foamability and foam consistency decreased dramatically at 2 wt% of NaCl concentration and above while WPI foam increased. The crude oil affected both foams, but WPI foam has not been affected as much as the SDS foam due to its high strength compared to traditional foams. The study shows that WPI reduced interfacial tension from 38 to 11 mN/m and reduced surface tension (72.3 to 48 mN/m). It was low enough and can be used as a substitute for a foaming agent to enhance the recovery of oil.


Foamability; Foam stability; Salinity; Whey protein isolated foam; Oil presence

Full Text:



Alavi, F., Chen, L., Wang, Z. and Emam Djomeh, Z., 2021. "Consequences of heating under alkaline pH alone or in the presence of maltodextrin on solubility, emulsifying and foaming properties of faba bean protein," Food Hydrocoll., 112, 106335.

Alvarez Yela, A. C., Tibaquirá Martínez, M. A., Rangel Piñeros, G. A., López, V. C., Villamizar, S. H., Núñez Vélez, V. L., Abraham, W. R., Vives Flórez, M. J. and González Barrios, A. F., 2016. "A comparison between conventional Pseudomonas aeruginosa rhamnolipids and Escherichia coli transmembrane proteins for oil recovery enhancing," Int. Biodeterio. Biodegradation, 112, 59–65.

AlYousef, Z., Almobarky, M. and Schechter, D., 2017. "Enhancing the stability of foam by the use of nanoparticles," Energy Fuels, 31(10), 10620–10627.

AlYousef, Z., Gizzatov, A., AlMatouq, H. and Jian, G., 2020. "Effect of Crude Oil on CO2–Foam Stability". Offshore Technology Conference Asia, Kuala Lumpur, Malaysia.

AlYousif, Z., Kokal, S., Alabdulwahab, A. and Gizzatov, A., 2018. "CO2-Foam Rheology: Effect of Surfactant Concentration, Shear Rate and Injection Quality." SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition., Dammam, Saudi Arabia.

Anazadehsayed, A., Rezaee, N., Naser, J. and Nguyen, A. V., 2018. "A review of aqueous foam in microscale", Adv. Colloid Interface Sci., 256, 203–229.

Atta, D. Y., Negash, B. M., Yekeen, N. and Habte, A. D., 2021. "A state-of-the-art review on the application of natural surfactants in enhanced oil recovery", J. Mol. Liq., 321, 114888.

Audebert, A., Saint-Jalmes, A., Beaufils, S., Lechevalier, V., Le Floch-Fouéré, C., Cox, S., Leconte, N. and Pezennec, S., 2019. "Interfacial properties, film dynamics, and bulk rheology: A multi-scale approach to dairy protein foams", J. Colloid Interface Sci., 542, 222–232.

Aurepatipan, N., Champreda, V., Kanokratana, P., Chitov, T. and Bovonsombut, S., 2018. "Assessment of bacterial communities and activities of thermotolerant enzymes produced by bacteria indigenous to oil-bearing sandstone cores for potential application in Enhanced Oil Recovery", J. Petrol. Sci. Eng., 163 295–302.

Behera, S., Arora, R., Nandhagopal, N. and Kumar, S., 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renew. Sust. Energ. Rev., 36, 91–106.

Berton‐Carabin, C. C., Schröder, A., Rovalino‐Cordova, A., Schroën, K. and Sagis, L., 2016. "Protein and lipid oxidation affect the viscoelasticity of whey protein layers at the oil-water interface", Eur. J. Lipid Sci. Technol., 118 (11), 1630–1643.

Braun, L., Kühnhammer, M. and von Klitzing, R., 2020. "Stability of aqueous foam films and foams containing polymers: Discrepancies between different length scales", Curr. Opin. Colloid Interface Scie., 50, 101379.

Chakravarthy, D., Muralidharan, V., Putra, E. and Schechter, D. S., 2004. "Application of X-Ray CT for investigation of CO2 and WAG injection in fractured reservoirs." 5th Canadian International Petroleum Conference, Calgary, Alberta, Canada.

Chen, M., Yang, J., Gao, Y., Chen, Y. and Li, D., 2014. "Molecular Dynamics Studies of Homogeneous and Heterogeneous Thermal Bubble Nucleation", J. Heat Trans., 136(4), 1–8.

El-hoshoudy, A. N., 2019. "Application of proteins in enhanced oil recovery-A review", Petrol. Coal, 61 (6), 1268–1281.

Enick, R. M., Olsen, D. ., Ammer, J. . and Schuller, W., 2012. "Mobility and Conformance Control for CO2 EOR via Thickeners, Foams, and Gels - A Literature Review of 40 Years of Research and Pilot Tests" SPE Improved Oil Recovery Symposium, Tulsa, OKlahoma, USA.

Farajzadeh, R., Eftekhari, A. A., Dafnomilis, G., Lake, L. W. and Bruining, J., 2020. "On the sustainability of CO2 storage through CO2 – Enhanced oil recovery", Appl. Energy., 261, 114467.

Farajzadeh, R., Wassing, B. L. and Lake, L. W., 2019. "Insights into design of mobility control for chemical enhanced oil recovery", Energy Rep., 5, 570–578.

Farhadi, H., Riahi, S., Ayatollahi, S. and Ahmadi, H., 2016. "Experimental study of nanoparticle-surfactant-stabilized CO2 foam: Stability and mobility control", Chem. Eng. Res. Des., 111, 449–460.

Farzaneh, S. A. and Sohrabi, M., 2015. "Experimental investigation of CO2-foam stability improvement by alkaline in the presence of crude oil", Chem. Eng. Res. Des., 94 375–389.

Firouzi, M. and Nguyen, A. V., 2014. "Effects of monovalent anions and cations on drainage and lifetime of foam films at different interface approach speeds", Adv. Powder Technol., 25(4), 1212–1219.

González-Tello, P., Camacho, F., Guadix, E. M., Luzón, G. and González, P. A., 2009. "Density, viscosity and surface tension of whey protein concentrate solutions", J. Food Process Eng., 32(2), 235–247.

Grossmann, L., Beicht, M., Reichert, C. and Weiss, J., 2019. "Foaming properties of heat-aggregated microparticles from whey proteins", Colloids Surf., A Physicochem. Eng. Asp., 579, 123572.

Heller, J. P., Dandge, D. K., Card, R. J. and Donaruma, L. G., 1985. "Direct Thickeners for Mobility Control of Co2 Floods", Soc. Pet. Eng. J., 25(5), 679–686.

Hinderink, E. B. A., Sagis, L., Schroën, K. and Berton-Carabin, C. C., 2020. ‘Behavior of plant-dairy protein blends at air-water and oil-water interfaces", Colloids Surf., B Biointerfaces,192, 111015.

Jambrak, A. R., Mason, T. J., Lelas, V., Herceg, Z. and Herceg, I. L., 2008. "Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions", J. Food Eng., 86(2), 281–287.

Jia, B., Tsau, J. S. and Barati, R., 2019. "A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs’, Fuel., 236, 404–427.

Jia, H., Leng, X., Hu, M., Song, Y., Wu, H., Lian, P., Liang, Y., Zhu, Y., Liu, J. and Zhou, H., 2017. "Systematic investigation of the effects of mixed cationic/anionic surfactants on the interfacial tension of a water/model oil system and their application to enhance crude oil recovery", Colloids Surf., A Physicochem. Eng. Asp., 529, 621–627.

Jiang, S., Altaf hussain, M., Cheng, J., Jiang, Z., Geng, H., Sun, Y., Sun, C. and Hou, J., 2018. "Effect of heat treatment on physicochemical and emulsifying properties of polymerized whey protein concentrate and polymerized whey protein isolate", LWT., 98, 134–140.

Kang, C., Zhang, W., Ji, Y. G., and Cui, Y., 2019. "Geometry and Motion Characteristics of Bubbles Released in Liquid Cross Flow", J. Appl. Fluid Mech., 12(3), 667–677.

Kawale, D., van Nimwegen, A. T., Portela, L. M., van Dijk, M. A. and Henkes, R. A. W. M., 2015. "The relation between the dynamic surface tension and the foaming behaviour in a sparger setup", Colloids Surf. A, Physicochem. Eng. Asp., 481, 328–336.

Van Kempen, S. E. H. J., Schols, H. A., Van Der Linden, E. and Sagis, L. M. C., 2014. "Molecular assembly, interfacial rheology and foaming properties of oligofructose fatty acid esters", Food Funct., 5(1), 111–122.

Kumari, R., Kakati, A., Nagarajan, R. and Sangwai, J. S., 2019. "Synergistic effect of mixed anionic and cationic surfactant systems on the interfacial tension of crude oil-water and enhanced oil recovery", J. Dispers. Sci, Technol., 40(7), 969–981.

Lam, R. S. H., and Nickerson, M. T., 2013. "Food proteins: A review on their emulsifying properties using a structure-function approach", Food Chem., 141(2), 975–984.

Lazidis, A., Hancocks, R. D., Spyropoulos, F., Kreuß, M., Berrocal, R., and Norton, I. T., 2016. "Whey protein fluid gels for the stabilisation of foams", Food Hydrocoll., 53, 209–217.

Le, L., Ramanathan, R. and Nasr-El-Din, H., 2019. "Evaluation of an Ethoxylated Amine Surfactant for CO2-Foam Stability at High Salinity Conditions." Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE.

Lexis, M. and Willenbacher, N., 2014. "Yield stress and elasticity of aqueous foams from protein and surfactant solutions – The role of continuous phase viscosity and interfacial properties", Colloids Surf. A, Physicochem. Eng. Asp., 459,177–185.

Li, S., Li, Z. and Wang, P., 2016. "Experimental Study of the Stabilization of CO2 Foam by Sodium Dodecyl Sulfate and Hydrophobic Nanoparticles", Ind. Eng. Chem. Res., 55(5), 1243–1253.

Li, Z., Wu, H., Hu, Y., Chen, X., Yuan, Y., Luo, Y., Hou, J., Bai, B. and Kang, W., 2020. "Ultra-low interfacial tension biobased and catanionic surfactants for low permeability reservoirs", J. Mol. Liq., 309.

Liu, H. and Zhang, Z., 2011. "Biology enzyme EOR for low permeability reservoirs." Society of Petroleum Engineers - SPE Enhanced Oil Recovery Conference (EORC), Kuala Lumpur, Malaysia.

Lv, M., Wang, S., Zhai, Z., Luo, X. and Jing, Z., 2016. "Comparative investigation of the static and dynamic properties of CO2 foam and N2 foam", Can. J. Chem. Eng., 94(7), 1313–1321.

Mansour, E., Sabagh, A., Desouky, S., Zawawy, F., and Ramzi, M., 2016. "Experimental approach of minimum miscibility pressure for co2 miscible flooding: Application to egyptian oil fields", Int. J. New Technol. Res., 2(5), 263507.

Marinova, K. G., Dimitrova, L. M., Marinov, R. Y. and Denkov, N. D., 2012. "Impact of the surfactant structure on the foaming / defoaming performance of nonionic block copolymers in Na caseinate solutions", Bulg. J. Phys., 39, 53–64.

Martinez, M. J., Pizones Ruiz-Henestrosa, V. M., Carrera Sánchez, C., Rodríguez Patino, J. M. and Pilosof, A. M. R., 2013. "Foaming and surface properties of casein glycomacropeptide-gelatin mixtures as affected by their interactions in the aqueous phase", Food Hydrocoll., 33(1), 48–57.

Massarweh, O. and Abushaikha, A. S., 2020. "The use of surfactants in enhanced oil recovery: A review of recent advances", Energy Rep. 6, 3150–3178.

Mehrabianfar, P., Bahraminejad, H. and Manshad, A. K., 2021. "An introductory investigation of a polymeric surfactant from a new natural source in chemical enhanced oil recovery (CEOR)", J. Petrol. Sci. Eng., 198, 108172.

Mishra, S., Bera, A. and Mandal, A., 2014. "Effect of polymer adsorption on permeability reduction in enhanced oil recovery", J. Petrol. Eng., 1–9.

Muherei, M. A., Junin, R. and Bin Merdhah, A. B., 2009. "Adsorption of sodium dodecyl sulfate, Triton X100 and their mixtures to shale and sandstone: A comparative study’, J. Petrol. Sci. Eng., 67(3–4), 149–154.

Narchi, I., Vial, C. and Djelveh, G., 2008. "Effect of matrix elasticity on the continuous foaming of food models", Appl. Biochem. Biotechnol., 151(2–3), 105–121.

Narsimhan, G. and Xiang, N., 2018. "Role of proteins on formation, drainage, and stability of liquid food foams", Annu. Rev. Food Sci. Technol., 9, 45–63.

Nastaj, M. and Sołowiej, B. G., 2020. "The effect of various pH values on foaming properties of whey protein preparations", Int. J. Dairy Technol., 73(4), 683–694.

Nastaj, M., Sołowiej, B. G., Terpiłowski, K. and Mleko, S., 2020. "Effect of erythritol on physicochemical properties of reformulated high protein meringues obtained from whey protein isolate", Int. Dairy J., 105, 104672.

Nazari, N., Hosseini, H., Tsau, J. S., Shafer-Peltier, K., Marshall, C., Ye, Q. and Barati Ghahfarokhi, R., 2020. "Development of highly stable lamella using polyelectrolyte complex nanoparticles: An environmentally friendly scCO2 foam injection method for CO2 utilization using EOR", Fuel., 261, 116360.

Nazari, N., Tsau, J. S. and Barati, R., 2017. "CO2 foam stability improvement using polyelectrolyte complex nanoparticles prepared in produced water", Energies, 10(4).

Nicorescu, C., Djelveh, G., Legrand, J., Cuvelier, G., Riaublanc, A., Vial, C. and Nicorescu, I., 2008. "Combined effect of dynamic heat treatment and ionic strength on the properties of whey protein foams – Part II", Food Res. Int., 41(10), 980–988.

Nicorescu, I., Vial, C., Talansier, E., Lechevalier, V., Loisel, C., Della Valle, D., Riaublanc, A., Djelveh, G. and Legrand, J., 2011. "Comparative effect of thermal treatment on the physicochemical properties of whey and egg white protein foams", Food Hydrocoll., 25(4), 797–808.

Obisesan, O., Ahmed, R. and Amani, M., 2021. "The Effect of Salt on Stability of Aqueous Foams", Energies, 14(2), 279.

Olorunsola, E. O. and Adedokun, M. O., 2014. "Surface activity as basis for pharmaceutical applications of hydrocolloids: A review", J. Appl. Pharm. Sci., 4(10), 110–116.

Osei-Bonsu, K., Grassia, P. and Shokri, N., 2017. "Relationship between bulk foam stability, surfactant formulation and oil displacement efficiency in porous media’, Fuel., 203, 403–410.

Pal, N., Saxena, N., Divya Laxmi, K. V., and Mandal, A., 2018. "Interfacial behaviour, wettability alteration and emulsification characteristics of a novel surfactant: Implications for enhanced oil recovery", Chem. Eng. Sci., 187, 200–212.

Phukan, R., Gogoi, S. B. and Tiwari, P., 2020. "Effects of CO2-foam stability, interfacial tension and surfactant adsorption on oil recovery by alkaline-surfactant-alternated-gas/CO2 flooding", Colloids Surf., A Physicochem. Eng. Asp., 597, 124799.

Podella CW, Baldridge JW, M. A., 2013. U. S. Pat.13 924 424.

Pogaku, R., Mohd Fuat, N. H., Sakar, S., Cha, Z. W., Musa, N., Awang Tajudin, D. N. A. and Morris, L. O., 2018. "Polymer flooding and its combinations with other chemical injection methods in enhanced oil recovery", Polym. Bull., 75(4), 1753–1774.

Pu, W., Pang, S. and Wang, C., 2017. "Experimental investigation of foam performance in the presence of crude oil", J. Surfactants Deterg., 20(5), 1051–1059.

Rio, E., Drenckhan, W., Salonen, A. and Langevin, D., 2014. "Unusually stable liquid foams", Adv. Colloid Interface Sci., 74–86.

Rocha-Pino, Z., Ramos-López, J. I., Gimeno, M., Barragán-Aroche, F., Durán-Valencia, C., López-Ramírez, S. and Shirai, K., 2018. "Enhanced oil recovery by hydrophobins from Lecanicillium lecanii", Fuel., 224, 10–16.

Rusanov, A. I., Krotov, V. V. and Nekrasov, A. G., 2004. "Extremes of some foam properties and elasticity of thin foam films near the critical micelle concentration", Langmuir, 20(4), 1511–1516.

Sagir, M., Tan, I. M., Mushtaq, M., Ismail, L., Nadeem, M., and Azam, M. R., 2014. "Synthesis of a new CO2 Philic surfactant for enhanced oil recovery applications", J. Dispers. Sci. Technol., 35(5), 647–654.

Samin, A. M., Manan, M. A., Idris, A. K., Yekeen, N., Said, M., and Alghol, A., 2017. "Protein foam application for enhanced oil recovery", J. Dispers. Sci. Technol., 38(4), 604–609.

Schramm, Laurier L. and Novosad, J. J., 1990. "Micro-visualization of foam interactions with a crude oil", Colloids Surf., 46(1), 21–43.

Schulze-Schlarmann, J., Buchavzov, N. and Stubenrauch, C., 2006. "A disjoining pressure study of foam films stabilized by tetradecyl trimethyl ammonium bromide C14TAB", Soft Matter., 2(7), 584.

Simjoo, M., Rezaei, T., Andrianov, A., and Zitha, P. L. J., 2013. "Foam stability in the presence of oil: Effect of surfactant concentration and oil type", Colloids Surf. A: Physicochem. Eng. Asp., 438, 148–158.

Skauge, A., Solbakken, J., Ormehaug, P. A. and Aarra, M. G., 2020. "Foam generation, propagation and stability in porous medium", Transp. Porous Media,131(1), 5–21.

Susanti, D. Y., Sediawan, W. B., Fahrurrozi, M., Hidayat, M. and Putri, A. Y., 2021. "Encapsulation of red sorghum extract rich in proanthocyanidins: Process formulation and mechanistic model of foam-mat drying at various temperature", Chem. Eng. Process.: Process Intensif., 164, 108375.

Varade, S. R. and Ghosh, P., 2017. "Foaming in aqueous solutions of zwitterionic surfactant: Effects of oil and salts", J. Dispers. Sci. Technol., 38(12), 1770–1784.

Veyskarami, M., Hossein Ghazanfari, M. and Shafiei, Y., 2019. "Monitoring the behaviour of anionic polymer-anionic surfactant stabilized foam in the absence and presence of oil: Bulk and bubble-scale experimental analyses", Can. J. Chem. Eng., 97(S1), 1386–1398.

Yang, J., Thielen, I., Berton-Carabin, C. C., van der Linden, E. and Sagis, L. M. C., 2020. "Nonlinear interfacial rheology and atomic force microscopy of air-water interfaces stabilized by whey protein beads and their constituents", Food Hydrocoll., 101, 105466.

Yekeen, N. Idris, A. K. Manan, Muhammad A and Samin, A. M., 2017. "Experimental study of the influence of silica nanoparticles on the bulk stability of SDS-foam in the presence of oil", J. Dispers. Sci. Technol., 38(3), 416–424.

Yekeen, N. Idris, A. K. Manan, Muhammad A. Samin, A. M. Risal, A. R. and Kun, T. X., 2017. "Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability," Chin. J. Chem. Eng., 25(3). 347–357.

Yekeen, N. Manan, M. A. Idris, A. K. Padmanabhan, E. Junin, R. Samin, A. M. Gbadamosi, A. O. and Oguamah, I., 2018. "A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery," J. Petrol. Sci. Eng., 43–74.

Yu, K. Li, B. Zhang, H. Wang, Z. Zhang, W. Wang, D. Xu, H. Harbottle, D. Wang, J. and Pan, J., 2021. "Critical role of nanocomposites at air–water interface: From aqueous foams to foam-based lightweight functional materials," Chem. Eng. J., 416. 129121.

Zhang, S. Jiang, G. Wang, L. Guo, H. Tang, X. and Bai, D. G., 2014. "Foam flooding with ultra-low interfacial tension to enhance heavy oil recovery," J. Dispers. Sci. Technol., 35(3), 403–410.

Zhou, J. Ranjith, P. G. and Wanniarachchi, W. A. M., 2020. "Different strategies of foam stabilization in the use of foam as a fracturing fluid", Adv. Colloid Interface Sci., 276, 102104.

DOI: https://doi.org/10.22146/ajche.69004

Article Metrics

Abstract views : 737 | views : 444


  • There are currently no refbacks.

ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.