Immobilization of Saccharomyces cerevisiae in Jackfruit (Artocarpus heterophyllus) Seed Fiber for Bioethanol Production

https://doi.org/10.22146/ajche.69781

Zuhriyan Ash Shiddieqy Bahlawan(1*), Megawati Megawati(2), Astrilia Damayanti(3), Radenrara Dewi Artanti Putri(4), Ayu Nur Permadhini(5), Khoridatus Sulwa(6), Fahreza Pracenda Felicitia(7), Anggun Septiamurti(8)

(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Indonesia
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Indonesia
(4) Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Indonesia
(5) Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Indonesia
(6) Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Indonesia
(7) Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Indonesia
(8) Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Indonesia
(*) Corresponding Author

Abstract


Bioethanol is alternative renewable energy typically obtained from glucose through a fermentation process using Saccharomyces cerevisiae. In the bioethanol fermentation process using yeast, there are several inhibiting factors, such as a high concentration of substrate, ethanol as the product, and nutrients. The present study aimed to investigate the effect of fermentation time (12- 72 hours), immobilized carrier size (sizes of 0.5 cm3 , 1 cm3 , and 1.5 cm3 ), and medium pH (3.0, 4.0, and 5.0) on the ethanol fermentation process using immobilized yeast in jackfruit (Artocarpus heterophyllus) seeds and subsequently to compare its performance with a free cell system. The highest ethanol concentration (89.15 g/L) with a yield of 96.92% was obtained by immobilizing yeast in jackfruit seed at a fermentation time of 72 hours, carrier size of 0.5 cm3 , and medium pH of 5.0. When compared to the free cell system fermentation under identical operating conditions, immobilized yeast in jackfruit seed obtained 1.41 times higher ethanol concentration. Jackfruit seed also led to a higher ethanol concentration compared to other S. cerevisiae carriers. Altogether, our findings imply that jackfruit seed has great potential as a carrier of S. cerevisiae in the process of fermenting glucose into ethanol


Keywords


ethanol fermentation; Saccharomyces cerevisiae; immobilization; jackfruit seed

Full Text:

PDF


References

Adelabu, B. A., Kareem, S. O., Oluwafemi, F., & Abideen Adeogun, I. (2019). Bioconversion of corn straw to ethanol by cellulolytic yeasts immobilized in Mucuna urens matrix. Journal of King Saud University - Science, 31(1), 136–141. https://doi.org/10.1016/j.jksus.2017.07.005

Beniwal, A., Saini, P., Kokkiligadda, A., & Vij, S. (2018). Use of silicon dioxide nanoparticles for β-galactosidase immobilization and modulated ethanol production by co-immobilized K. marxianus and S. cerevisiae in deproteinized cheese whey. LWT, 87, 553–561. https://doi.org/10.1016/J.LWT.2017.09.028

Bouaziz, F., Abdeddayem, A. Ben, Koubaa, M., Barba, F. J., Jeddou, K. Ben, Kacem, I., Ghorbel, R. E., & Chaabouni, S. E. (2020). Bioethanol Production from Date Seed Cellulosic Fraction Using Saccharomyces cerevisiae. Separations 2020, Vol. 7, Page 67, 7(4), 67. https://doi.org/10.3390/SEPARATIONS7040067

Chaudhary, R., Maji, S., Shrestha, R. G., Shrestha, R. L., Shrestha, T., Ariga, K., & Shrestha, L. K. (2020). Jackfruit Seed-Derived Nanoporous Carbons as the Electrode Material for Supercapacitors. C, 6(4), 73. https://doi.org/10.3390/c6040073

Chen, C. C., Wu, C. H., Wu, J. J., Chiu, C. C., Wong, C. H., Tsai, M. L., & Lin, H. T. V. (2015). Accelerated bioethanol fermentation by using a novel yeast immobilization technique: Microtube array membrane. Process Biochemistry, 50(10), 1509–1515. https://doi.org/10.1016/J.PROCBIO.2015.06.006

Damayanti, A., Kumoro, A. C., & Bahlawan, Z. A. S. (2021). Review Calcium Alginate Beads as Immobilizing Matrix of Functional Cells: Extrusion Dripping Method, Characteristics, and Application. IOP Conference Series: Materials Science and Engineering, 1053(1), 012017. https://doi.org/10.1088/1757-899x/1053/1/012017

Desimone, M. F., Degrossi, J., D’Aquino, M., & Diaz, L. E. (2003). Sol-gel immobilisation of Saccharomyces cerevisiae enhances viability in organic media. Biotechnology Letters 2003 25:9, 25(9), 671–674. https://doi.org/10.1023/A:1023481304479

Diana, B., Scherbaka, R., Patmalnieks, A., & Rapoport, A. (2014). Effects of yeast immobilization on bioethanol production. Biotechnology and Applied Biochemistry, 61(1), 33–39. https://doi.org/10.1002/BAB.1158

Ezugwu, A. L., Eze, S. O. O., & Chilaka, F. C. (2015). A study of the optimal conditions for glucoamylases obtained from Aspergillus niger using amylopectin from cassava starch as carbon source. African Journal of Biotechnology, 14(36), 2693–2702. https://doi.org/10.5897/ajb2015.14857

Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: an update. Journal of Chemical Biology, 6(4), 185. https://doi.org/10.1007/S12154-013-0102-9

Huang, J., Khan, M. T., Perecin, D., Coelho, S. T., & Zhang, M. (2020). Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective. Renewable and Sustainable Energy Reviews, 133(August), 110296. https://doi.org/10.1016/j.rser.2020.110296

Hussain, A., Kangwa, M., Yumnam, N., & Fernandez-Lahore, M. (2015). Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor. AMB Express 2015 5:1, 5(1), 1–8. https://doi.org/10.1186/S13568-015-0138-Z

Jayed, M. H., Masjuki, H. H., Kalam, M. A., Mahlia, T. M. I., Husnawan, M., & Liaquat, A. M. (2011). Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia. In Renewable and Sustainable Energy Reviews (Vol. 15, Issue 1, pp. 220–235). Elsevier Ltd. https://doi.org/10.1016/j.rser.2010.09.002

Jayus, Setiawan, D., & Giyarto. (2016). Physical and Chemical Characteristics of Jackfruit (Artocarpus Heterophyllus Lamk.) Seeds Flour Produced Under Fermentation Process by Lactobacillus Plantarum. Agriculture and Agricultural Science Procedia, 9, 342–347. https://doi.org/10.1016/j.aaspro.2016.02.148

Kumoro, A. C., Damayanti, A., Bahlawan, Z. A. S., & Melina, M. (2021). Bioethanol Production from Oil Palm Empty Fruit Bunches Using Saccharomyces cerevisiae Immobilized on Sodium Alginate Beads. Periodica Polytechnica Chemical Engineering. 1–12. https://doi.org/10.3311/PPch.16775

Lee, K. H., Choi, I. S., Kim, Y. G., Yang, D. J., & Bae, H. J. (2011). Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource Technology, 102(17), 8191–8198. https://doi.org/10.1016/J.BIORTECH.2011.06.063

Li, J., & Cheng, W. (2020). Comparison of life-cycle energy consumption , carbon emissions and economic costs of coal to ethanol and bioethanol. Applied Energy, 277(July), 115574. https://doi.org/10.1016/j.apenergy.2020.115574

Lin, Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S., & Kong, H. (2014). Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy, 47, 395–401. https://doi.org/10.1016/j.biombioe.2012.09.019

Liu, X., Jia, B., Sun, X., Ai, J., Wang, L., Wang, C., Zhao, F., Zhan, J., & Huang, W. (2015). Effect of Initial PH on Growth Characteristics and Fermentation Properties of Saccharomyces cerevisiae. Journal of Food Science, 80(4), M800–M808. https://doi.org/10.1111/1750-3841.12813

Maiorella, B., Blanch, H. W., & Wilke, C. R. (1983). By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 25(1), 103–121. https://doi.org/10.1002/BIT.260250109

Malik, K., Salama, E. S., El-Dalatony, M. M., Jalalah, M., Harraz, F. A., Al-Assiri, M. S., Zheng, Y., Sharma, P., & Li, X. (2021). Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: Long-term investigation. Industrial Crops and Products, 159, 113122. https://doi.org/10.1016/J.INDCROP.2020.113122

Martini, E., Andriani, D., GobiKrishnan, S., Kang, K., Bark, S.-T., Sunwoo, C., Prasetya, B., & Park, D.-H. (2011). Immobilization of Saccharomyces Cerevisiae in Rice Hulls for Ethanol Production. Makara Journal of Technology, 14(2), 61–64. https://doi.org/10.7454/693

Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S. I., & Lee, Y. C. (2005). Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry, 339(1), 69–72. https://doi.org/10.1016/j.ab.2004.12.001

Megawati, Damayanti, A., Putri, R. D. A., Bahlawan, Z. A. S., Mastuti, A. A. D., & Tamimi, R. A. (2022). Hydrolysis of S. platensis Using Sulfuric Acid for Ethanol Production. Materials Science Forum, 1048, 451–458. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.1048.451

Megawati, Bahlawan Z. A. S., Damayanti, A., Putri, R. D. A., Triwibowo, B., & Prasetiawan, H. (2021). Comparative study on the various hydrolysis and fermentation methods of Chlorella vulgaris biomass for the production of bioethanol. International Journal of Renewable Energy Development, 11(2). https://doi.org/10.14710/ijred.2022.4169610.14710/IJRED.2022.41696

Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. In Biochemistry and Biophysics Reports (Vol. 10, pp. 52–61). Elsevier B.V. https://doi.org/10.1016/j.bbrep.2017.03.003

Nugraheni, S. D., & Mastur, M. (2017). Perbaikan Bioproses Untuk Peningkatan Produksi Bioetanol Dari Molase Tebu / Bioprocess Improvement for Enhanching Bioethanol Production of Sugarcane Molase. Perspektif, 16(2), 69. https://doi.org/10.21082/psp.v16n2.2017.69-79

Ong, H. C., Mahlia, T. M. I., & Masjuki, H. H. (2011). A review on energy scenario and sustainable energy in Malaysia. In Renewable and Sustainable Energy Reviews (Vol. 15, Issue 1, pp. 639–647). Pergamon. https://doi.org/10.1016/j.rser.2010.09.043

Pacheco, A. M., Gondim, D. R., & Gonçalves, L. R. B. (2010). Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse. Applied Biochemistry and Biotechnology, 161(1–8), 209–217. https://doi.org/10.1007/S12010-009-8781-Y

Rattanapan, A., Limtong, S., & Phisalaphong, M. (2011). Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons. Applied Energy, 88(12), 4400–4404. https://doi.org/10.1016/J.APENERGY.2011.05.020

Santos, E. L. I., Rostro-Alanís, M., Parra-Saldívar, R., & Alvarez, A. J. (2018). A novel method for bioethanol production using immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane. Bioresource Technology, 247, 165–173. https://doi.org/10.1016/J.BIORTECH.2017.09.091

Sriariyanun, M., Mutrakulcharoen, P., Tepaamorndech, S., Cheenkachorn, K., & Rattanaporn, K. (2019). A Rapid Spectrophotometric Method for Quantitative Determination of Ethanol in Fermentation Products. Oriental Journal of Chemistry, 35(2), 744–750. https://doi.org/10.13005/ojc/350234

Sudhakar, M. P., Arunkumar, K., & Perumal, K. (2020). Pretreatment and process optimization of spent seaweed biomass (SSB) for bioethanol production using yeast (Saccharomyces cerevisiae). Renewable Energy, 153, 456–471. https://doi.org/10.1016/j.renene.2020.02.032

Tesfaw, A., & Assefa, F. (2014). Current Trends in Bioethanol Production by Saccharomyces cerevisiae : Substrate, Inhibitor Reduction, Growth Variables, Coculture, and Immobilization . International Scholarly Research Notices, 2014, 1–11. https://doi.org/10.1155/2014/532852

Verma, P., Stevanovic, S., Zare, A., Dwivedi, G., Van, T. C., Davidson, M., Rainey, T., Brown, R. J., & Ristovski, Z. D. (2019). An overview of the influence of biodiesel, alcohols, and various oxygenated additives on the particulate matter emissions from diesel engines. Energies, 12(10). https://doi.org/10.3390/en12101987

Waghmare, R., Memon, N., Gat, Y., Gandhi, S., Kumar, V., & Panghal, A. (2019). Jackfruit seed: an accompaniment to functional foods. Brazilian Journal of Food Technology, 22, 2018207. https://doi.org/10.1590/1981-6723.20718

Yanto, H., Rofiah, A., & Bahlawan, Z. A. S. (2019). Environmental Performance and Carbon Emission Disclosures: A case of Indonesian Manufacturing Companies. Journal of Physics: Conference Series, 1387(1), 12005. https://doi.org/10.1088/1742-6596/1387/1/012005

Yu, J., Zhang, X., & Tan, T. (2007). An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. Journal of Biotechnology, 129(3), 415–420. https://doi.org/10.1016/J.JBIOTEC.2007.01.039

Zhang, Q., Wu, D., Lin, Y., Wang, X., Kong, H., & Tanaka, S. (2015). Substrate and product inhibition on yeast performance in ethanol fermentation. Energy and Fuels, 29(2), 1019–1027. https://doi.org/10.1021/ef502349v

Zhu, D., Li, X., Liao, X., & Shi, B. (2017). Immobilization of Saccharomyces cerevisiae using polyethyleneimine grafted collagen fibre as support and investigations of its fermentation performance. Http://Mc.Manuscriptcentral.Com/Tbeq, 32(1), 109–115. https://doi.org/10.1080/13102818.2017.1389302

Zhu, D., Li, X., Liao, X., & Shi, B. (2018). Immobilization of Saccharomyces cerevisiae using polyethyleneimine grafted collagen fibre as support and investigations of its fermentation performance. Biotechnology and Biotechnological Equipment, 32(1), 109–115. https://doi.org/10.1080/13102818.2017.1389302/SUPPL_FILE/TBEQ_A_1389302_SM5733.PDF



DOI: https://doi.org/10.22146/ajche.69781

Article Metrics

Abstract views : 3110 | views : 1381

Refbacks

  • There are currently no refbacks.


ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.