Effect of pH on Adsorption of Cu2+ by Using Composite of Polyvinyl alcohol (PVA)/Kaolin

https://doi.org/10.22146/ajche.71028

Nur Afiqah Aina Hassim(1), Khee Chung Hui(2), Dita Floresyona(3), Norashikin Ahmad Kamal(4), Nonni Soraya Sambudi(5*)

(1) Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Perak, Malaysia
(2) Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Perak, Malaysia
(3) Department of Chemical Engineering, Universitas Pertamina, Simprug, Jakarta Selatan 12220, Indonesia
(4) Department of Civil Engineering, Universiti Teknologi MARA (UiTM) Shah Alam, Selangor, 40450, Malaysia
(5) Department of Chemical Engineering, Universitas Pertamina, Simprug, Jakarta Selatan 12220, Indonesia
(*) Corresponding Author

Abstract


The existence of copper ions in the aquatic environment at a high level can cause negative repercussions for living organisms due to the toxic effect of bioaccumulation in the food chain. Hence, a profound effort is imperative to remove them from water effectively. Among feasible alternatives, a composite film made of PVA and kaolin is reviewed for copper removal via an adsorption mechanism. In this paper, the removal of copper ions from aqueous solution using PVA/Kaolin composite film has been studied with initial copper ions concentration within the range of 50 and 100 ppm and pH of the aqueous solution being controlled at 4, 7, and 9. The loading of 3 wt% kaolin in PVA shows the best adsorption performance in removing 99.14% of 50 ppm copper with an equilibrium adsorption capacity of 5.379 mg g-1 at pH 7. The composite can maintain the adsorption performance for the removal of 100 ppm copper solution at 96.26%.


Keywords


Composite, Copper, Heavy metal, Kaolin, Polyvinyl alcohol

Full Text:

PDF


References

Abbar, B., Alem, A., Marcotte, S., Anne, P., Ahfir, N.-D., Bizet, L., & Duriatti, D. (2017). Experimental investigation on removal of heavy metals (Cu 2+ , Pb 2+ , and Zn 2+ ) from aqueous solution by flax fibres. Process Safety and Environmental Protection, 109.

Abu-Saied, M. A., Wycisk, R., Abbassy, M. M., El-Naim, G. A., El-Demerdash, F., Youssef, M. E., Pintauro, P. N. (2017). Sulfated chitosan/PVA absorbent membrane for removal of copper and nickel ions from aqueous solutions—Fabrication and sorption studies. Carbohydrate Polymers, 165, 149-158.

Al-Hwaiti, M., Ibrahim, K. A., & Harrara, M. (2019). Removal of heavy metals from waste phosphogypsum materials using polyethylene glycol and polyvinyl alcohol polymers. Arabian Journal of Chemistry, 12(8), 3141-3150.

Al-Makhadmeh, L., & Batiha, M. A. (2016). Removal of iron and copper from aqueous solutions using Jordanian kaolin and zeolitic tuff. Desalination and Water Treatment, 57(44), 20930-20943.

Aragaw, T. A., & Angerasa, F. T. (2020). Synthesis and characterization of Ethiopian kaolin for the removal of basic yellow (BY 28) dye from aqueous solution as a potential adsorbent. Heliyon, 6(9), e04975.

Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1), 37-59.

Bahah, S., Nacef, S., Chebli, D., Bouguettoucha, A., & Djellouli, B. (2020). A New Highly Efficient Algerian Clay for the Removal of Heavy Metals of Cu(II) and Pb(II) from Aqueous Solutions: Characterization, Fractal, Kinetics, and Isotherm Analysis. Arabian Journal for Science and Engineering, 45(1), 205-218.

Behnamfard, A., Chegni, K., Alaei, R., & Veglio, F. (2019). The effect of thermal and acid treatment of kaolin on its ability for cyanide removal from aqueous solutions. Environmental Earth Sciences, 78(14), 408.

Belachew, N., & Hinsene, H. (2019). Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Applied Water Science, 10(1), 38.

Ben Halima, N. (2016). Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Advances, 6(46), 39823-39832.

Bhattacharyya, K. G., & Gupta, S. S. (2009). Adsorptive Accumulation of Cd(II), Co(II), Cu(II), Pb(II) and Ni(II) Ions from Water onto Kaolinite: Influence of Acid Activation. Adsorption Science & Technology, 27(1), 47-68. doi:10.1260/026361709788921614

Boukhemkhem, A., & Rida, K. (2017). Improvement adsorption capacity of methylene blue onto modified Tamazert kaolin. Adsorption Science & Technology, 35(9-10), 753-773.

Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702-712.

Caponi, N., Collazzo, G., Jahn, S. L., Dotto, G., Mazutti, M., & Foletto, E. (2017). Use of Brazilian Kaolin as a Potential Low-cost Adsorbent for the Removal of Malachite Green from Colored Effluents. Materials Research.

Chai, J.-B., Au, P.-I., Mubarak, N. M., Khalid, M., Ng, W. P.-Q., Jagadish, P., Abdullah, E. C. (2020). Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay–based adsorbent. Environmental Science and Pollution Research, 27(12), 13949-13962.

Cheng, H., Huang, Y., Zhu, Z., Dong, L., Zha, J., & Yu, M. (2021). Enhanced PbCl2 adsorption capacity of modified kaolin in the furnace using a combined method of thermal pre-activation and acid impregnation. Chemical Engineering Journal, 414, 128672.

Dewi, R., Agusnar, H., Alfian, Z., & Tamrin. (2018). Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials. Journal of Physics: Conference Series, 1116, 042010.

Dissanayake, R. E. A., Premarathne, I. M., Iqbal, S. S., Priyantha, N., & Iqbal, M. C. M. (2021). Synthesis, characterization, and textile dye adsorption studies of a kaolin-based polymer layer silicate composite. International Journal of Environmental Science and Technology.

Gu, S., Kang, X., Wang, L., Lichtfouse, E., & Wang, C. (2019). Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 17(2), 629-654.

Han, H., Rafiq, M. K., Zhou, T., Xu, R., Mašek, O., & Li, X. (2019). A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. Journal of Hazardous Materials, 369, 780-796.

Hendrawan, H., Khoerunnisa, F., Sonjaya, Y., & Putri, A. (2019). Poly (vinyl alcohol)/glutaraldehyde/ Premna oblongifolia merr extract hydrogel for controlled-release and water absorption application. IOP Conference Series: Materials Science and Engineering, 509, 012048.

Hu, Y., Yang, Q., Kou, J., Sun, C., & Li, H. (2020). Aggregation mechanism of colloidal kaolinite in aqueous solutions with electrolyte and surfactants. PLOS ONE, 15(9), e0238350.

Huang, Q., Liu, M., Deng, F., Wang, K., Huang, H., Xu, D., .Wei, Y. (2016). Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions. Materials Chemistry and Physics, 181, 116-125.

Liu, J., Wang, X., Lin, C., & Miller, J. (2015). Significance of particle aggregation in the reverse flotation of kaolinite from bauxite ore. Minerals Engineering, 78.

Manyangadze, M., Chikuruwo, N. H. M., Narsaiah, T. B., Chakra, C. S., Radhakumari, M., & Danha, G. (2020). Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. South African Journal of Chemical Engineering, 31, 25-32.

Meroufel, B., Omar, B., Mohamed, B., Zenasni, M. A., Merlin, A., & George, B. (2013). Removal of Zn (II) from Aqueous Solution onto Kaolin by Batch Design. Journal of Water Resource and Protection, 05, 669-680.

Mgbemena, C., & Mgbemena, C. (2013). Determination of the Contact Angles of Kaolin Intercalates of Oleochemicals derived from Rubber Seed (Hevea Brasiliensis) and Tea Seed (Camelia Sinensis) Oils by the Capillary Rise Method. International Journal of Materials Science and Applications, 2, 99-103.

Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Mohammed, A. K., & Shuaib, D. T. (2019). Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater. Heliyon, 5(11), e02923.

Ngulube, T., Gumbo, J. R., Masindi, V., & Maity, A. (2017). An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. Journal of Environmental Management, 191, 35-57.

Niu, S., Xie, X., Wang, Z., Zheng, L., Gao, F., & Miao, Y. (2021). Enhanced removal performance for Congo red by coal-series kaolin with acid treatment. Environmental Technology, 42(10), 1472-1481.

Osredkar, J. (2011). Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. Journal of Clinical Toxicology, s3.

Rasheed, T., Bilal, M., Nabeel, F., Adeel, M., & Iqbal, H. M. N. (2019). Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environment International, 122, 52-66.

Renu, Agarwal, M., & Singh, K. (2016). Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination, 7(4).

Roque-Ruiz, J. H., Cabrera-Ontiveros, E. A., Torres-Perez, J., & Reyes-Lopez, S. Y. (2016). Preparation of PCL/Clay and PVA/Clay Electrospun Fibers for Cadmium (Cd+2), Chromium (Cr+3), Copper (Cu+2) and Lead (Pb+2) Removal from Water. Water Air and Soil Pollution, 227(8).

Simón-Herrero, C., Gómez, L., Romero, A., Valverde, J. L., & Sánchez-Silva, L. (2018). Nanoclay-Based PVA Aerogels: Synthesis and Characterization. Industrial & Engineering Chemistry Research, 57(18), 6218-6225.

Talaat, H., Defrawy, N., Abulnour, A., Hani, H., & Tawfik, A. (2011). Evaluation of Heavy Metals Removal Using Some Egyptian Clays. Int. Proc. Chem. Biol. Environ. Eng., 6.

Tan, I. K. G., Nugraha, M. W., Kamal, N., & Sambudi, N. (2020). Composite of Kaolin/Sodium Alginate (SA) Beads for Methylene Blue Adsorption. ASEAN Journal of Chemical Engineering, 19, 100.

Team, W. H. O. (2017). Guidelines for Drinking‑water Quality (W. H. Organization Ed. 4 ed.).

Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438-462.

Van Aken, B. (2008). Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends in Biotechnology, 26(5), 225-227.



DOI: https://doi.org/10.22146/ajche.71028

Article Metrics

Abstract views : 1999 | views : 798

Refbacks

  • There are currently no refbacks.


ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.