Heat Exchanger Network (HEN) Analysis of The Power Plant Industry Using Aspen Energy Analyzer Software
Maktum Muharja(1), Arief Widjaja(2), Rizki Fitria Darmayanti(3*), Bramantyo Airlangga(4), Rendra Panca Anugraha(5), Mar'atul Fauziyah(6), Eko Wijanarto(7), Mohammad Sholehuddin(8), Achri Isnan Khamil(9)
(1) Department of Chemical Engineering, Universitas Jember, Indonesia
(2) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
(3) Department of Chemical Engineering, Universitas Jember, Indonesia
(4) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
(5) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
(6) Department of Chemical Engineering, Brawijaya University, Indonesia
(7) PT Pembangkitan Jawa Bali, Paiton Generation Unit, Indonesia
(8) PT Pembangkitan Jawa Bali, Paiton Generation Unit, Indonesia
(9) Department of Chemical Engineering, Universitas Jember, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Akpomiemie, M.O., and Smith, R., 2018. “Cost-effective strategy for heat exchanger network retrofit.” Energy 146, 82–97. https://doi.org/10.1016/j.energy.2017.09.005
Di Pretoro, A., and Manenti, F., 2020. “Pinch Technology. In: Non-conventional Unit Operations,” in: Non-Conventional Unit Operations. SpringerBriefs in Applied Sciences and Technology. Springer, Cham., pp. 3–11. https://doi.org/10.1007/978-3-030-34572-3_1
El-darwish, I., and Gomaa, M., 2020. “Retrofitting strategy for building envelopes to achieve energy efficiency.” Alexandria Eng. J. 56, 579–589. https://doi.org/10.1016/j.aej.2017.05.011
Fleiter, T., Fehrenbach, D., Worrell, E., and Eichhammer, W., 2012. “Energy efficiency in the German pulp and paper industry–A model-based assessment of saving potentials.” Energy 40, 84–99. https://doi.org/10.1016/j.energy.2012.02.025
Goodarzvand-Chegini, F., and GhasemiKafrudi, E., 2017. “Application of exergy analysis to improve the heat integration efficiency in a hydrocracking process.” Energy Environ. 28, 564–579. https://doi.org/10.1177/ 0958305X17715767
Hassan, H., Ahmed, M.S., and Fathy, M., 2019. “Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC).” Renew. Energy 135, 136–147. https://doi.org/https://doi.org/10.1016/j.renene.2018.11.112
Kang, L., and Liu, Y., 2019. “Synthesis of flexible heat exchanger networks: A review.” Chinese J. Chem. Eng. 27, 1485–1497. https://doi.org/10.1016/j.cjche.2018.09.015
Karimi, H., Ahmadi-Danesh-Ashtiani, H., and Aghanajafi, C., 2019. “Applying multiple decomposition methods and optimization techniques for achieving optimal cost in mixed materials heat exchanger networks.” Int. J. Energy Res. 43, 3711–3722. https://doi.org/10.1002/er.4526
Klemeš, J.J., Wang, Q.-W., Varbanov, P.S., Zeng, M., Chin, H.H., Lal, N.S., Li, N.-Q., Wang, B., Wang, X.-C., and Walmsley, T.G., 2020. “Heat transfer enhancement, intensifica-tion and optimisation in heat exchanger network retrofit and operation.” Renew. Sustain. Energy Rev. 120, 109644. https://doi.org/10.1016/j.rser.2019.109644
Lai, Y.Q., Alwi, S.R.W., and Manan, Z.A., 2019. “Customised retrofit of heat exchanger network combining area distribution and targeted investment.” Energy 179, 1054–1066. https://doi.org/10.1016/j.energy. 2019.05.047
Mrayed, S., Shams, M. Bin, Al-Khayyat, M., and Alnoaimi, N., 2021. “Application of pinch analysis to improve the heat integration efficiency in a crude distillation unit.” Clean. Eng. Technol. 100168. https://doi.org/10.1016/j.clet.2021.100168
Muharja, M., Darmayanti, R.F., Fachri, B.A., Palupi, B., Rahmawati, I., Putri, D.K.Y., Amini, H.W., Setiawan, F.A., Asrofi, M., Widjaja, A., and Halim, A., 2023. “Biobutanol Production from Cocoa Pod Husk Through a Sequential Green Method: Depectination, Delignification, Enzymatic Hydrolysis, and Extractive Fermentation.” Bioresour. Technol. Reports 21, 101298. https://doi.org/10.1016/ j.biteb.2022.101298
Muharja, M., Darmayanti, R.F., Palupi, B., Rahmawati, I., Fachri, B.A., Setiawan, F.A., Amini, H.W., Rizkiana, M.F., Rahmawati, A., Susanti, A., and Putri, D.K.Y., 2021. “Optimization of microwave-assisted alkali pretreatment for enhancement of delignification process of cocoa pod husk.” Bull. Chem. React. Eng. Catal. 16, 31–43. https://doi.org/10.9767/BCREC. 16.1.8872.31-43
Muharja, M., Fadhilah, N., Darmayanti, R.F., Sangian, H.F., Nurtono, T., and Widjaja, A., 2020a. “Effect of severity factor on the subcritical water and enzymatic hydrolysis of coconut husk for reducing sugar production.” Bull. Chem. React. Eng. Catal. 15, 786–797. https://doi.org/10.9767/ BCREC.15.3.8870.786-797
Muharja, M., Fadhilah, N., Nurtono, T., and Widjaja, A., 2020b. “Enhancing enzymatic digestibility of coconut husk using nitrogen-assisted subcritical water for sugar production.” Bull. Chem. React. Eng. Catal. 15, 84–95. https://doi.org/10.9767/ bcrec.15.1.5337.84-95
Muharja, M., Junianti, F., Ranggina, D., Nurtono, T., and Widjaja, A., 2018. “An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk.” Bioresour. Technol. 249, 268–275. https://doi.org/10.1016/j.biortech.2017.10.024
Muharja, M., Umam, D.K., Pertiwi, D., Zuhdan, J., Nurtono, T., and Widjaja, A., 2019. “Enhancement of sugar production from coconut husk based on the impact of the combination of surfactant-assisted subcritical water and enzymatic hydrolysis.” Bioresour. Technol. 274, 89–96. https://doi.org/10.1016/j.biortech.2018.11.074
Njoku, H.O., Egbuhuzor, L.C., Eke, M.N., Enibe, S.O., and Akinlabi, E.A., 2019. “Combined pinch and exergy evaluation for fault analysis in a steam power plant heat exchanger network.” J. Energy Resour. Technol. 141. https://doi.org/10.1115/ 1.4043746
Ogbonnaya, B.U., Azeez, O.S., Akande, H.F., and Muzenda, E., 2021. “Investigation of loops and paths as optimization tools for total annual cost in heat exchanger networks.” Int. J. Energy Environ. Eng. 12, 281–293. https://doi.org/10.1007/s40095-020-00374-w
Seader, J.D., Seider, W.D., and Lewin, D.R., 2016. Product and process design principles: synthesis, analysis and evaluation. Wiley.
Smith, R., 2005. Chemical process: design and integration. John Wiley & Sons.
Taher Al-Mayyahi, M.A., Albadran, F.A., and Fares, M.N., 2019. “Retrofitting design of heat exchanger networks using supply-target diagram.” Chem. Eng. Trans. 75, 625–630. https://doi.org/10.3303/CET1975105
Walmsley, T.G., Lal, N.S., Varbanov, P.S., and Klemeš, J.J., 2018. “Automated retrofit targeting of heat exchanger networks.” Front. Chem. Sci. Eng. 12, 630–642. https://doi.org/10.1007/s11705-018-1747-2
Wang, B., Klemeš, J.J., Li, N., Zeng, M., Varbanov, P.S., and Liang, Y., 2021a. “Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method.” Renew. Sustain. Energy Rev. 138, 110479. https://doi.org/10.1016/ j.rser.2020.110479
Wang, B., Klemeš, J.J., Varbanov, P.S., and Liang, Y., 2021b. “A New Diagram for Long-term Heat Exchanger Network Cleaning and Retrofit Planning.” Chem. Eng. Trans. 86, 919–924. https://doi.org/10.3303/CET2186154
Wang, B., Klemeš, J.J., Varbanov, P.S., and Zeng, M., 2020. “An extended grid diagram for heat exchanger network retrofit considering heat exchanger types.” Energies 13. https://doi.org/10.3390/ en13102656
Zamora, J.M., Hidalgo-Muñoz, M.G., Pedroza-Robles, L.E., and Núñez-Serna, R.I., 2020. “Optimization and utilities relocation approach for the improvement of heat exchanger network designs.” Chem. Eng. Res. Des. 156, 209–225. https://doi.org/10.1016/j.cherd.2020.01.024
Żymełka, P., Żyrkowski, M., and Bujalski, M., 2018. “Analysis of Coal-Fired Power Unit Operation in Reduced Minimum Safe Load Regime,” in: Thermal Power Plants - New Trends and Recent Developments. https://doi.org/10.5772/intechopen.72954
DOI: https://doi.org/10.22146/ajche.72261
Article Metrics
Abstract views : 2785 | views : 1829Refbacks
- There are currently no refbacks.
ASEAN Journal of Chemical Engineering (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.