Statistical Characterization of Bubble Breakup Flow Structures in Swirl-Type Bubble Generator Systems

Drajat Indah Mawarni(1*), Wibawa Endra Juwana(2), IGNB Catrawedarma(3), Kumara Ari Yuana(4), Wiratni Budhijanto(5), Deendarlianto Deendarlianto(6), Indarto Indarto(7)

(1) Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Grafika 2 Street, Yogyakarta 55281, Indonesia
(2) Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Ir. Sutami Street No.36A, Surakarta, Indonesia
(3) Department of Mechanical Engineering, Politeknik Negeri Banyuwangi, Raya Jember Km. 13 Street, Labanasem, Banyuwangi 68461, Indonesia
(4) Computer Science Departement, Universitas Amikom Yogyakarta, Jl Raya Pajajaran, Ring Road Utara, Sleman, Yogyakarta, Indonesia
(5) Bioprocess Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Grafika 2 Street, Yogyakarta 55281, Indonesia
(6) Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Grafika 2 Street, Yogyakarta 55281, Indonesia
(7) Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Grafika 2 Street, Yogyakarta 55281, Indonesia
(*) Corresponding Author


The bubble breakup pattern on a swirl-type bubble generator (MBG) with water and air fluids was experimentally studied. The bubble breakup pattern was analyzed visually and characterized using several parameters such as Pressure Drop (∆P), Kolmogorov Entropy, Standard Deviation, and DWT (Discrete Wavelet Transform), which were taken from the extraction of pressure signals at the water inlet and outlet of the bubble generator. The wavelet spectrum of the measured signal was shown to identify the overall bubble breakup pattern, and the wavelet variance vector is proposed as a character vector to identify the bubble breakup pattern. The results show that there were three types of different flow breakup patterns: (1) static breakup, (2) dynamic breakup, and (3) tensile breakup. The observed bubble breakup sub-patterns can be categorized into tensile, moderate tensile, high tensile, dynamic, low dynamic, static, and high static sub-patterns. The static clustered breakup pattern has the highest wavelet energy compared to the tensile and dynamic clustered breakup.


Bubble Breakup; Swirl; Pressure Drop (∆P); Standard Deviation; Kolmogorov Entropy; Discrete Wavelet Transform (DWT); Tensile Breakup; Dynamic Breakup; Static Breakup

Full Text:



Apazidis, N. (1985). Influence of bubble expansion and relative velocity on the performance and stability of an airlift pump. IJMF, 11(4), 459–479.

Astyanto, A. H., Pramono, J. A. E., Catrawedarma, I. G. N. B., Deendarlianto, & Indarto. (2022). Statistical characterization of liquid film fluctuations during gas-liquid two-phase counter-current flow in a 1/30 scaled-down test facility of a pressurized water reactor (PWR) hot leg. ANE, 172, 109065.

Bergles, A. E. (1997). Heat transfer enhancement-the encouragement and accommodation of high heat fluxes. JHT, 119(1), 8–19.

Catrawedarma, I., Deendarlianto, & Indarto. (2020). The performance and flow characteristics of swirl flow injector type airlift pump system. AIP Conference Proceedings, 2248(July).

Catrawedarma, I. G. N. B., Deendarlianto, & Indarto. (2021). Statistical Characterization of Flow Structure of Air–water Two-phase Flow in Airlift Pump–Bubble Generator System. IJMF, 138, 103596.

Chen, B., Ho, K., Abkar, Y. A., & Chan, A. (2016). Fluid dynamics and heat transfer investigations of swirling decaying flow in an annular pipe Part 2: Fluid flow. IJHMT, 97, 1012–1028.

Elperin, T., & Klochko, M. (2002). Flow regime identification in a two-phase flow using wavelet transform. EF, 32(6), 674–682.

Fu, X. Y., & Ishii, M. (2003). Two-group interfacial area transport in vertical air-water flow - I. Mechanistic model. NED, 219(2), 143–168.

Grassberger, P. (1983). Lim, — 1). Physical Review, 28(4), 2591–2593.

Huang, J., Sun, L., Liu, H., Mo, Z., Tang, J., Xie, G., & Du, M. (2020). A review on bubble generation and transportation in Venturi-type bubble generators. ECMF, 2(3), 123–134.

Huang, J., Sun, L., Mo, Z., Liu, H., Du, M., Tang, J., & Bao, J. (2019). A visualized study of bubble breakup in small rectangular Venturi channels. ECMF, 1(3), 177–185.

Islek, A. (2004). The Impact of Swirl in Turbulent Pipe Flow. Retrieved from

Jana, A. K., Das, G., & Das, P. K. (2006). Flow regime identification of two-phase liquid-liquid upflow through vertical pipe. CES, 61(5), 1500–1515.

Juwana, W. E., Widyatama, A., Dinaryanto, O., Budhijanto, W., Indarto, & Deendarlianto. (2019). Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator. CERD, 141, 436–448.

Kogawa, H., Naoe, T., Kyotoh, H., Haga, K., Kinoshita, H., Futakawa., M. (2015). Development of Microbubble Generator for Suppression of Pressure Wave in Mercury Target of Spallation Source. JNST, 52(12).

Liu, L., & Bai, B. (2019). Flow regime identification of swirling gas-liquid flow with image processing technique and neural networks. CES, 199, 588–601.

Liu, S., Zhang, D., Yang, L. le, & Xu, J. yu. (2018). Breakup and coalescence regularity of non-dilute oil drops in a vane-type swirling flow field. CERD, 129, 35–54.

Mawarni, D. I., Juwana, W. E., Yuana, K. A., Budhijanto, W., Deendarlianto, & Indarto. (2022). Hydrodynamic characteristics of the microbubble dissolution in liquid using the swirl flow type of microbubble generator. JWPE, 48(2), 102846.

McBride, C., Walter, J., Blanch, H. W., & Russell, T. W. F. (1981). Bubble Coalescence and Break-Up in Fermentations. SEP, 36(10), 489-496B.

Morshed, M., Khan, M. S., Rahman, M. A., & Imtiaz, S. (2020). Flow regime, slug frequency and wavelet analysis of air/Newtonian and air/non-Newtonian two-phase flow. AS (Switzerland), 10(9).

Mote, C. D. (1973). The response of an elastic disk with a moving mass system. JAMT ASME, 40(4), 1151–1152.

Ohnari, H. (1997). Waste water purification in wide water area by use of micro-bubble techniques (article written in Japanese). JJMF, 11(0834), 263–266.

Shuai, Y., Guo, X., Wang, H., Huang, Z., Yang, Y., Sun, J., … Yang, Y. (2019a). Characterization of the bubble swarm trajectory in a jet bubbling reactor. AIChE Journal, 65(5), 1–11.

Shuai, Y., Wang, X., Huang, Z., Yang, Y., Sun, J., Wang, J., & Yang, Y. (2019b). Bubble Size Distribution and Rise Velocity in a Jet Bubbling Reactor [Research-article]. IECR, 58(41), 19271–19279.

Song, Y., Wang, D., Yin, J., Li, J., & Cai, K. (2019). Experimental studies on bubble breakup mechanism in a venturi bubble generator. ANE, 130, 259–270.

Tabei, K., Haruyama, S., Y. (2007). Study of Micro Bubble Generation by a Swirl Jet. JEE, 2(1), 172 – 182.

Terasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S., & Kobayashi, D. (2011). Development of microbubble aerator for waste water treatment using aerobic activated sludge. CES, 66(14), 3172–3179.

Vial, C., Camarasa, E., Poncin, S., Wild, G., Midoux, N., & Bouillard, J. (2000). Study of hydrodynamic behaviour in bubble columns and external loop airlift reactors through analysis of pressure fluctuations. CES, 55(15), 2957–2973.

Wang, X., Shuai, Y., Zhang, H., Sun, J., Yang, Y., Huang, Z., … Yang, Y. (2020). Bubble breakup in a swirl-venturi microbubble generator. CEJ, 403(February).

Wijayanta, S., Indarto, Deendarlianto, Catrawedarma, I. G. N. B., & Hudaya, A. Z. (2022). Statistical characterization of the interfacial behavior of the sub-regimes in gas-liquid stratified two-phase flow in a horizontal pipe. FMI, 83(2), 102107.

Xiang, J., Li, Q., Tan, Z., & Zhang, Y. (2017). Characterization of the flow in a gas-solid bubbling fluidized bed by pressure fluctuation. CES, 174, 93–103.

Xu, X., Ge, X. L., Qian, Y. D., Wang, H. L., & Yang, Q. (2018). Bubble-separation dynamics in a planar cyclone: Experiments and CFD simulations. AIChE Journal, 64(7), 2689–2701.

Xu, X., Ge, X., Qian, Y., Zhang, B., Wang, H., & Yang, Q. (2018). Effect of nozzle diameter on bubble generation with gas self-suction through swirling flow. CERD, 138, 13–20.

Yin, J., Li, J., Ma, Y., Li, H., Liu, W., & Wang, D. (2015). Study on the air core formation of a gas-liquid separator. JFET of the ASME, 137(9), 1–9.

Yin, J., Qian, Y., Zhang, T., & Wang, D. (2018). Numerical investigation on the bubble separation in a gas-liquid separator applied in TMSR. ANE, 114, 122–128.

Zhao, L., Sun, L., Mo, Z., Du, M., Huang, J., Bao, J., … Xie, G. (2019). Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles. IJMF, 114, 192–206.

Zhao, L., Sun, L., Mo, Z., Tang, J., Hu, L., & Bao, J. (2018). An investigation on bubble motion in liquid flowing through a rectangular Venturi channel. ETFS, 97(October 2017), 48–58.


Article Metrics

Abstract views : 1007 | views : 803


  • There are currently no refbacks.

ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.