Cover Image

ANALISIS POLA DISPERSI PARTIKULAT DAN SULFURDIOKSIDA MENGGUNAKAN MODEL WRFCHEM DI SEKITAR WILAYAH INDUSTRI TANGERANG DAN JAKARTA (Analysis of Particulate and Sulfurdioxide Pattern Dispersion using WRFChem Model over Industrial Area In Tangerang)

https://doi.org/10.22146/jml.18788

Ana Turyanti(1*), Tania June(2), Edvin Aldrian(3), Erliza Noor(4)

(1) Program Studi Pengelolaan Sumberdaya Alam dan Lingkungan, Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor, 16680
(2) Departemen Geofisika dan Meteorologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor, 16680
(3) Pusat Penelitian dan Pengembangan, Badan Meteorologi Klimatologi dan Geofisika, Kemayoran, Jakarta Pusat, 10720
(4) Departemen Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor, 16680
(*) Corresponding Author

Abstract


ABSTRAK

Peningkatan aktivitas industri dan transportasi menjadi pemicu timbulnya potensi pencemaran udara yang berdampak pada kesehatan masyarakat, terutama di sekitar wilayah industri dan kota-kota besar. Pengenalan daerah yang rawan terhadap pemaparan konsentrasi pencemar udara maksimum perlu dilakukan untuk mengantisipasi dampak terhadap kesehatan masyarakat dan lingkungan. Studi ini bertujuan untuk menganalisis sebaran pencemar udara di sekitar wilayah industri dan menentukan lokasi yang berpotensi terpapar pencemar udara dengan konsentrasi maksimum, khususnya partikulat (dalam hal ini PM10) dan sulfurdioksida (SO2). Lokasi studi adalah wilayah Jakarta dan Tangerang, yang merupakan daerah padat transportasi juga industri. Analisis dispersi menggunakan model Weather Research Forecasting / Chemistry (WRFChem) dengan ukuran grid 4 x 4 km, selama periode 5 hari (120 jam) masing-masing pada bulan Agustus dan Desember. Hasil analisis model menunjukkan lokasi yang rawan terpapar pencemar PM10 maupun SO2 dengan konsentrasi maksimum adalah Jakarta Pusat dan Jakarta Utara, secara umum terjadi pada tengah malam hingga pagi hari. Pada siang hari konsentrasi maksimum cenderung terjadi di sekitar Jakarta Selatan, Tangerang Selatan, serta Kabupaten Tangerang. Secara temporal terjadi fluktuasi konsentrasi pencemar udara, konsentrasi siang hari rendah dan meningkat menjelang malam hari hingga dini hari. Faktor meteorologi terutama pola angin sangat mempengaruhi pola sebaran pencemar di wilayah studi, dan keberadaan garis pantai juga mempengaruhi terakumulasinya pencemar di sekitar wilayah Jakarta.


ABSTRACT

Increasing industrial and transportation activity were associated with air pollution, especially in urban and industrial area. The air pollution is associated with significant adverse health effects. Understanding the potential implications of the air pollution to human health, developing strategies to mitigate the pollution should be seen as a serious attention. The purpose of this study was to analyze air pollutant dispersion within industrial area and to determine the locations that potentially exposed to maximum pollutant concentrations, especially PM10 and SO2.The evaluation was conducted within Jakarta and Tangerang using a well known modelling tool ‘WRFChem’. The WRFChem was simulated for the period of 5 days (120 hours) in August and December using the grid size of 4 km x 4 km. The model shows that the maximum concentrations of PM10 and SO2 occurred within Central Jakarta and the North Jakarta, frequently found from the midnight to morning. While during the day time, the maximum concentration tend to occur within the region of South Jakarta, South Tangerang, and Tangerang Regency. Diurnal fluctuation shows the pollutant concentrations are increased at night and decreased after sunrise. Meteorological factors, mainly wind direction, affects the pollutants dispersion in the area of study, and the existence of the shoreline also affects pollutants accumulation around Central Jakarta.



Keywords


konsentrasi maksimum; kualitas udara; partikulat; pola angin; sebaran pencemar udara; sulfurdioksida; air pollutant dispersion; air quality; maximum concentration; particulate; sulfurdioxide; wind pattern



References

Anonim, 1998. Toxicological Profile for Sulfurdioxide. US Department of Health and Human Services, Georgia.

Anonim, 2001. Quantification of the Health Effects of Exposure to Air Pollution : Report of a WHO Working Group. European Centre for Environment and Health, World Health Organization, Bilthoven.

Anonim, 2006. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen dioxide and Sulfur dioxide Global Update 2005: Summary of Risk Assessment. World Health Organization, Geneva.

Anonim, 2014. Advanced Research WRF (ARW) version 3 Modeling System User’s Guide. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, http://www.mmm.ucar.edu/wrf/users/.

Arifin dan Sutomo, A.H., 2003. Faal Paru Penduduk Desa Tarjun Sekitar Pabrik Semen Tiga Roda Kecamatan Kelumpang Selatani Kabupaten Kota Baru. Jurnal Manusia dan Lingkungan 10(1):1-9.

Bacarelli, A., Baretta, F., Chang, D., Xiao, Z., McCraken, J.P., Díaz, A., Bertazzi, P.A., Schwartz, J., Sheng, W., dan Lifang, H., 2011. Effects of Particulate Air Pollution on Blood Pressure in a Highly Exposed Population in Beijing, China : a Repeated-Measure Study. Environmental Health, 10:108

Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J, Brunner, D, Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S.T., Savage, N., Seigneur, C., Sokhi, R.S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., dan Zhang, Y., 2014. Online Coupled Regional Meteorology Chemistry Models in Europe: Current Status and Prospects. Atmos. Chem. Phys., 14:317–398.

Finn, D., Clawson, K.L., Carter, R.G., Rich, J.D., Biltoft, C., dan Leach, M., 2010. Analysis of Urban Atmosphere Plume Concentration Fluctuation. Boundary Layer Meteorol, 136:431-456.

Forkel, R., Balzarini, A., Baró, R., Curci, G., Jiménez-Guerrero., P, Hirtl, M,, Honzak, L., Lorenz, C., Im, U., Pérez, J.L., Pirovano, G., José, R.S., Tuccella, P., Werhahn, J., dan Žabkar, R., 2015. Analysis of the WRF-Chem contributions to AQMEII phase2 with respect to aerosol radiative feedbacks on meteorology and pollutant distribution. Atmospheric Environment 115:630-645.

Grell, G. dan Baklanov, A., 2011. Integrated Modeling for Forecasting Weather and Air Quality: A Call for Fully Coupled Approaches. Atmospheric Environment, 45:6845-6851.

Grell, G., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., dan Eder, B., 2005. Fully Coupled ‘‘Online’’ Chemistry within the WRF Model. Atmos. Environ. 39:6957-6976.

Gupta, M dan Mohan, M., 2013. Assessment of Contribution to PM10 Concentrations from Long Range Transport of Pollutants using WRF/Chem over a Subtropical Urban Airshed. Atmospheric Pollution Research, 4:405-410.

Hadiwidodo, M., dan Huboyo, H.S., 2006. Pola Penyebaran Gas NO2 di Udara Ambien Kawasan Utara Kota Semarang pada Musim Kemarau menggunakan Program ISCST3. Jurnal Presipitasi 1(1):19-25

Heriyanto, E., 2014. Kajian Model WRF/Chem untuk Analisis Polusi Perkotaan. Laporan Tahunan Hasil-hasil Kegiatan Puslitbang BMKG Tahun 2014. Badan Meteorologi Klimatologi dan Geofisika, Jakarta.

Liao, J., Wang, T., Wang, X., Xie, M., Jiang, Z., Huang, X., dan Zhu, J., 2014. Impacts of Different Urban Canopy Schemes in WRF/Chem on Regional Climate and Air Quality in Yangtze River Delta, China. Atmospheric Research 145-146 : 226-243.

Lippmann, M., dan Ito, K., 2006. Sulfur Dioxide. Air Quality Guidelines Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. World Health Organization Regional Office for Europe, Copenhagen.

López-Cima, M.F., García-Pérez, J., Pérez-Gómez, B., Aragonés, N., López-Abente, G., Tardón,A., dan Pollán, 2011. Lung Cancer Risk and Pollution in an Industrial Region of Northern Spain : a Hospital-based Case-control Study. International Journal of Health Geographics 10:10

Nasstrom, J.S., Sugiyama, G., Leone, Jr. J.M., dan Ermak, D.L., 2000. A Real-time Atmospheric Dispersion Modeling System. 11th Joint Conference on the Application of Air Pollution Meteorology with the Air Waste Management Association, Long Beach, CA. January 9-14, 2000.

Oke, T.R., 1986. Boundary Layer Climates. Methuen & Co. Ltd, London.

Orru, H., Teinemaa, E., Lai, T., Tamm, T., Kaasik, M., Kimmel, V., Kangur, K., Merisalu, E., dan Forsberg, B., 2009. Health Impact Assessment of Particulate Pollution in Tallinn using Fine Spatial Resolution and Modeling Techniques. Environmental Health, 8:7-15.

Pasquill, F., 1974. Atmospheric Diffusion: The Dispersion of Windborn Material from Industrial and other Sources. 2nd ed. John Wiley & Sons Ltd, New York.

Pernigotti, D., Rossa, A.M., Ferrario, M.E., Sansone. M., dan Benassi, A., 2007. Influence of ABL Stability on the Diurnal Cycle of PM10 Concentration: Illustration of the Potential of the New Veneto Network of MW-radiometers and SODAR. Meteorologische Zeitschrift, Fast Track. DOI: 10.1127/0941-2948/ 2007/0204.

Rahmawati, F., 2003. Aplikasi Model Dispersi Gauss untuk Menduga Pencemaran Udara di Kawasan Industri [tesis]. Program Pascasarjana, Institut Pertanian Bogor, Bogor.

Ranzi, A., Fano, V., Erspamer, L., Lauriola, P., Perucci ,C.A., dan Forastiere, F., 2011. Mortality and Morbidity Among People Living Close to Incinerators : a Cohort Study Based on Dispersion for Exposure Assessment. Environmental Health 10:22.

Ruhiyat, Y., 2009. Model Prediksi Distibusi Laju Penyebaran Sulfur Dioksida (SO2) dan Debu dari Kawasan Industri [disertasi], Program Pascasarjana. Institut Pertanian Bogor, Bogor.

Sansone, M., Bressan, M., Pernigotti, D., Rossa, A.M., Ferrario, M.E., dan Benassi, A., 2006. A Multiple Regression Approach to Forecasting PM10 Concentration in the City of Padua, Italy. Proc. Of The Int. Conf. On Urban Climate, Göteborg, 10–16 June 2006.

Stroh, E., Oudin, A., Gustafsson, S., Pilesjö, P., Harrie, L., Strömberg, U., dan Jakobsson, K., 2005. Are Associations Between Socio-economic Characteristics and Exposure to Air Pollution a Question of Study Area Size? An Example from Scania, Sweden. International Journal of Health Geographics 4:30-42.

Tseng, C.Y., Huang, Y.C., Su, S.Y., Huang, J.Y., Lai, C.H., Lung, C.C, Ho, C.C., dan Liaw, Y.P., 2012. Cell Type Specificity of Female Lung Cancer Associated with Sulfur Dioxide from Air Pollutants in Taiwan: An Ecological Study. BMC Public Health, 12(4):1-8.

Tucella, P., Curci, G., Visconti, G., Bessagnet, B., Menut, L., dan Park, R.J., 2012. Modelling of Gas and Aerosol with WRF/Chem over Europe : Evaluation and Sensitivity Study. Journal of Geophysical Research, 117: D03303.

Warlina, L., 2008. Model Dampak Pencemaran untuk Penyusunan Kebijakan Pengendalian Dioksin/Furan (Studi Kasus : Industri Logam Di Kawasan Cilegon) [Disertasi]. Program Pascasarjana. Institut Pertanian Bogor, Bogor.

Yerramilli, A., Challa, V.S., Dodla, V.B.R., Myles, L., Pendergrass, W.R., Vogel, C.A., Tuluri, F., Baham, J.M., Hughes, R., Patrick, C., Young, J., dan Swanier, S., 2008. Simulation of Surface Ozon Pollution in the Central Gulf Coast Region during Summer Synoptic Condition using WRF/Chem Air Quality Model. Atmospheric Pollution Research, 3:55-71.

Zhang, Y., Dubey, M.K., Olsen, S.C., Zheng, J., dan Zhang, R., 2009. Comparison of WRFChem Simulations in Mexico City with Ground-based RAMA Measurements during the 2006 – MILAGRO. Atmos. Chem. Phys., 9:3773-3798.



DOI: https://doi.org/10.22146/jml.18788

Article Metrics

Abstract views : 6869 | views : 13423

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Jurnal Manusia dan Lingkungan



JML Indexed by:

  

Web
Analytics View My Stats