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ABSTRACT

Neural networks are useful to identify complex
nonlinear relationships between input and output of a system.
Cumulative fruit responses such as water losses and ripening
during storage - are characterized non-linearly. For
identification, several patterns of these cumulative responses,
as affected by environmental factors, are often conducted by
repeating the experiment several times under different
environmental conditions. It is not well-known how many
response patterns (training data sets) are necessary for an

acceptable identification. This research explores ‘an effective -

way to identify the cumulative responses of tomato during
storage using neural networks. Firstly, data for identification
were obtained from a mathematical model. Secondly, the
relationship between the number of response pattern and the
estimation error were investigated. The estimated error
becomes smaller when the number of response pattern is
three or more. This suggests that three types of response
patterns allow cumulative responses to be successfully
identified. Besides, an addition of linear data (1, 2, .., N) as
input variable significantly improves the identification
accuracy of the cumulative response. Finally, the
identification of actual data was implemented based on these
results and the satisfactory results will be obtained.
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INTRODUCTION

In fruit production processes, the final quality of fruit
is dependent on the storage process. Up to now, cold
storage is one of the method to control environmental
factors. Under this condition, however, the quality of fruit
sccms to be never improved while its freshness can be
maintained. In order to keep the fruit quality, it is
important to control the environmental factors in the
storage building adequately = with respect to ‘the
‘physiological status of fruit.

There are many types of fruit responses during the
storage process. Cumulative fruit responses such as water
losses and color change, which are characterized by the
change in one direction (increase or decrease), are well
used for evaluating the fruit quality. These data are
important in controlling the fruit quality. Models of these
cumulative responses to environmental factors are
necessary for realizing the optimal control of the fruit
storage process.

System identification is one of the modeling

techniques for an unknown dynamic system (Eykhoff,
1974). In the modeling techniques, a model is built based
on actual input and output data measured from a real
system.. Neural networks have a capability to identify
complex nonlinear relationships between input and output
data sets with their own high learning ability (Hinton,
1992). In recent years, neural networks have been widely
applied to the identification of agricultural production
systems (Hirafuji, 1991; Honjo et al.. 1992; Seginer and
McClenden, 1992; Morimoto et al., 1995). Purwanto et al
(1996) showed that a neural network model ‘was more
effective than an ARMA model for identifying such
nonlinear complex systems as plant responded to
environmental factors. Hsu et al (1995) also showed the
same results in another research.

The problem in getting the cumulative responses for
identification using neural networks is the reason to repeat
the same experiment several times under different
environmental conditions in order to obtain several types
of input and output data sets. It is however not well-known
how many response patterns the input and the output data
sets are required for acceptable identification. It-is also
difficult to identify the dynamic relationships between the
input of environment and the output of cumulative
responses, because the cumulative responses always
increase (or decrease) in one direction, regardless the
change direction of input. ‘

In this study, the effective way to identify such
cumulative responses of tomato and the number of
response patterns (training data set) required for acceptable
identification will be examined through both simulation
and actual experiment using neural networks.

MATERIALS AND METHODS
Data for identification

Data obtained from a mathematical model (Estimated
data) : Firstly, the data for identification were obtained
from a mathematical model in order to make the
identification exactly under no measuring noise. The
model is given by a first order differential equation as
follows.

X=Ax+Bu y=CX 1
=[ydt 2
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where x is a state variable, u is an input variable which
corresponds - to - environmental factor, y is an output
variable which corresponds to the rate (or velocity) of fruit
response, A, B and C are coefficient factors and here given
as -0.9, 0.9 and 1.0, respectively. By integrating y, the
cumulative response z can be obtained, as expressed in
equation 2. The output y is called “velocity response
(output 1)” and the output z “cumulative response (output
2)”. It is no problem to use a linear model in order to
examine the relationship between the number of data
pattern and the estimated error using neural networks,
since the fruit responses are characterized by nonlinearity.
Actual data (fruit responses) : Secondly, actual data
were used for identification. The input is a storage
temperature and the outputs are fruit responses such as the
water loss and the color change of tomato (Lycopersicon
esculentum Mill. cv. Momotaro). The sampling interval
was one day. The experiments were carried out using a
chamber  (Tabai-espec, LHU-112M), where the
temperature and the relative humidity are controlled at the
accuracy of 0.1°C and 2% RH, respectively. For simpler
identification of fruit responses, the data were sampled at
the rate of one data in a day. The water loss of the fruit
was estimated from the weight using an electric balance
(Sartorius, LC-621S). The color (ripening) of tomato was
evaluated using a color sensor (Minolta, CR-200b). For the
evaluation of the color, which is the range of green to
redness, a hue angle (degree) in the Lch method was used.

Neural networks for identification

Neural networks are capable of recognizing the
relationships between the input and the output of an ill-
defined system with their own learning ability. Figure 1
shows a three layer neural network for identifying the
dynamic responses of a single input single output (SISO)
system. Moreover, a single input multi output (SIMO)
systemn was also supposed.
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Fig. 1. A three layer neural network architectures for
system identification (u(k): input, z;(k): output, n:
number of system parameter).

The input is the temperature {u(k)} and the outputs are two
types of fruit responses, the water loss {zy(k)} and the
color {zx(k)} of fruit, which are both given by cumulative
responses. As shown in the figure, for the identification of
a SISO system, the current output, z,(k), is estimated from
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nth historical output data {z,(k-1), ... , zy(k-n)} and
(n+1)th historical input data {u(k), u(k-1), ....., u(k-n)} (k:
sampling time-point, n: number of system parameter). So,
the neuron number in the input layer is (2n+1) and that in
the output is 1. In the case of a single input and two output
system, on the other hand, the input neuron number is
(3n+1). The neuron number in the hidden layer was
determined through trial and error. The learning algorithm
of neural networks is an error back propagation
(Rumelhart et al., 1986; Chen et al., 1990). The learning
rate and the momentum factor are 0.02 and 0.8,
respectively. The iteration number for learning is 30,000.

IDENTIFiCATION OF MODEL DATA

Cumulative and velocity responses obtained from a
mathematical model

To begin with, the data for identification were
obtained from the model given by equations 1 and 2, and
then divided into two groups: the training data set for
building a model and the testing data set for evaluating the
accuracy of the model. Figures 2 and 3 show the training
data set, which has seven types of response patterns, and
the testing data set, which has six types of response
patterns, respectively.
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Fig. 2. Training data set consists of seven types of velocity
and cumulative response patterns, obtained from a
mathematical model.
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Fig. 3. Testing data set consists of six types of velocity and
cumulative response patterns, obtained from a
mathematical model ,

All data were obtained from a mathematical model. In both
figures. the bottom figures indicate the input data, the
middle ones the velocity responses, and the top ones the
cumulative responses which were obtained by integrating
the velocity responses. Each response has nine data. Such
data number can be seen scant for effective .identification.
The training data set and the testing data set were obtained
from the same model but they were independent with each
other.

Comparison of the estimated accuracy using neural
networks and least squares

Table | shows the comparisons of the estimated error
in the identification of the velocity responses and the
cumulative responses using the neural network and least
squares methods (Auto Regressive Moving Average and
Moving Average models).
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Table 1. Comparison of the estimated error for the velocity
and cumulative responses obtained from a
mathematical model using the neural network.

Data ' Estimated Error
Neural Network  Least Squares
Velocity response 0,0033 0,0019
Cumulative response 0,1066 1,2478

For identification using the neural network, the
system parameter number n and the hidden neuron number
in the neural network were 1 and 5, respectively. Here, the
minimum value of system parameter number n=1 was used
for this identification from a viewpoint of computational
time saving. In three methods, the estimated error for the
velocity responses are much smaller than that for the
cumulative responses. This is caused by the velocity
responses being quite similar to the change pattern of the
input. From the estimated error for the velocity responses,
it was slightly smaller with an ARMA (Auto Regressive
Moving Average) and a MA (Moving Average) than with
the neural network while all the errors were enough small
for identification. However, the estimated error for the
cumulative response was much smaller by the neural
network and an ARMA model than by a MA model. Thus,
it is found that the neural network is superior to a MA
model for the identification of the cumulative responses
from several simulation.

Improvement of the identification of cumulative
responses

From Table 1, the estimated error for the cumulative
response was larger than that for the velocity response. A
further step was required to improve the performance of
the neural network shown in Fig.1 because the cumulative
responses are more important than the velocity responses
for control. Improvisation was done by adding a linear data
{d(k)=1,2, ..., N} as one of the input variables because the
cumulative responses are characterized by the change in
one direction (only increasing or decreasing direction),
regardless of the change direction of the input. In this case,
the current output z;(k) is estimated from nth historical
output data {z,(k-1), ..... , z1(k-n)}, linear data d(k) and
(n+1)th historical input data {u(k), u(k-1),. ....., u(k-n)}.
The neuron number in the input layer is'(2n+2) and that in
the -output is 1. This improved type is called a “type II
neural network”, and the basic type is called a “type I
neural network”,

Figure 4 represents the estimated errors obtained
from the identification of the testing data, as a function of
the number of system parameter n, using the type I and a
type II neural networks. The error by the type I neural
network dramatically dropped over n=2. On the other
hand, the estimated error by the Type II neural network
showed a markedly low value from n=1. Under n=1,
therefore, the error by the type II became much lower than
that by the type I. This is probably due to appropriate
matching of cumulative responses and linear data. This
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result shows that the type II neural network provides much
better performance for identification at the smallest value
n=1. This is apparently profitable for the prediction of
small number of data. The case of n=2 may be also
attractive because of its smaller error.
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Fig. 4. Estimated errors, as a function of the number of
system parameter n, in the identification of
cumulative responses.

Comparison of the estimated error under the different
number of response pattern

The type II neural network was superior to the type I
neural network under n=1. It was also found that the
estimated error under n=2 was enough small to identify the
cumulative responses. The last exploration of this study is

to examine the number of the response pattern required for

acceptable identification of the cumulative responses under
n=1 or 2 using the type II neural network. Figure 5 shows
the relationship between the number of the response
pattern and the estimated error under n=1 using the type II
neural network. Only the testing data set was used for this
examination.

0.5
0.4
0.3
0.2
0.1

0

Estimated error

1 2 3 4 5 6 17
Number of response pattern

Fig. 5. Estimated error, as a function of the number of the
response pattern, obtained from identification of
the cumulative responses using the type II neural
network (n=1).
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From the figure, the estimated error dramatically dropped
when the number of the response pattern is 2 or 3. There
was no significant differences in the error when the
number of the response pattern is over 3. This feature was
the same as the case of n=2. Therefore, it is found that
three response patterns is allowable for the effective
identification of the cumulative responses. ‘

This result suggests that an acceptable model for
control can be obtained by repeating the experiment at
least three times under different temperature conditions.
In this case, it may be necessary to well change the time
course of the input.

IDENTIFICATION OF FRUIT RESPONSES
Actual fruit responses

Figure 6 shows the daily changes in the water loss
and the color (hue angle in the Lch method) of tomato,
which are both defined as a cumulative response, under
different temperature conditions. Relative humidity was
kept constant (90% RH). Seven types of responses patterns
were obtained. Each response has eight data. These types
of responses (cumulative responses) are often observed in
the area of agricultural production. As shown in the figure,
it is found that the response of the color can be seen quite
nonlinear while that in the water loss looks more linear.

water loss (%)

Hue angle (degree)

Temperature (°C)

Fig. 6. Daily changes in the water loss and the color (hue
angle in the Lch method) of tomato (Actual).
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Identification of actual cumulative fruit responses

Next, the actual data shown in Fig.6 are identified.
Figure 7 (a) and (b) show the comparisons of the estimated
errors in the identifications of the water loss and the color
of fruit using the type II neural network (NN) an ARMA
model and a MA model.
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Fig. 7. Comparisons of the estimated error using the type II
neural network, an ARMA model and a MA model.

In the identification of the color, it is found that the
estimated error is much smaller by the type II neural
network than by an ARMA. This is probably due to the
strong nonlinear relationship between the color of fruit and
the temperature. This means that the type II neural network
is superior to an ARMA model for the identification of
nonlinear cumulative responses.

Figure 8 represents the comparisons between the
estimated responses, calculated from the type II neural
network, and the observed responses of water loss. The
system parameter number and the hidden neuron number
were | and 5, respectively.

It is found that all the estimated responses are closely
related to the observed responses.
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Fig. 8 Comparisons of the estimated responses and the
observed responses of the water loss of tomato, as
affected by temperature (Actual data).

Figure 9 shows estimated relationships between the
temperature and the water loss of tomato under different
days after storage, estimated using the type II neural-
network model. These relationships were obtained by
plotting the values on 3, 4, 5 and 6 days after storage in
each cumulative response under  different
temperatures. Closed circle on the figure represent
observed values. Relative humidity is assumed to be kept
constant (90%RH).
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Fig. 9. Estimated relationships between the temperature
and the water loss of tomato, which are made
using values on 3, 4 and 5 days after storage in
their cumulative responses (Simulation)

It can be seen that the estimated values are quite
similar to the observed values. Slight non-linearity is
observed in the relation between the temperature and the
water loss.
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CONCLUSION

In this study, a three-layer neural network was
applied to the identification of the cumulative responses
such as the water loss and redness of tomato, as affected
by environmental factors. It is concluded that the neural
network approach for the identification of cumulative
responses are resulting best performance when the system
parameter number n=1, the number of response pattern 3
or more, and adding a linear data to the input variable of
the neural network like the Type II neural network. This
implies that the type II neural network is effective for the
identification of cumulative responses under small data
number from the viewpoint of computational time saving.
The techniques obtained here can be applicable to a wide
variety of identification problems in plant production
systems.
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