DETEKSI AWAL PERUBAHAN IKLIM
MELALUI ANALISIS TERRESTRIAL VARIASI HUJAN MUSIMAN
(PRELIMINARY DETECTION OF CLIMATIC CHANGE THROUGH TERRESTRIAL ANALYSIS
OF SEASONAL VARIATION OF RAINFALL)
Oleh: Sahid Susanto*

ABSTRACT
Climate change has been the main issue in the recent years. However, most researches related to climate change were detected by using global scale approach. In this paper, a terrestrial analysis of seasonal variation of rainfall in tropical monsoon climate was demonstrated to make preliminary detection of climate change. The change was initially detected by using statistical theory of the normal frequency distribution and then verified quantitatively by using the method of time series with additive seasonal variation. Rapidly economic development at Bali, West Java and Central Java, Indonesia that significantly affects the carbon dioxide (CO2) exhaust and landscape change were used as samples analysis. The result proved that the method was valid to detect climate changes terrestrially. The meaning of climate change for risk analysis of agricultural process production and development policy of Indonesia have also been discussed.

Key words: Climate change, terrestrial analysis, normal frequency distribution, time series with additive seasonal variation

PENDAHULUAN

Latar Belakang

Usaha untuk memproteksi iklim dunia sangatlah tepat dan perlu didukung semua pihak. Dengan demikian, penahaman tentang fenomena perubahan iklim menjadi penting karena merupakan kunci utama agar dalam menyusun kebijakan yang ada kaitannya dengan pemanfaatan sumberdaya alam dapat optimal. Bidang ilmu iklim yang diwujudkan dalam peramalan iklim dalam skala musiman dan tahunan maupun dalam bentuk prediksi anasir iklim dalam skala waktu yang lebih panjang pada dasarnya dikembangkan atas dasar asumsi adanya konsistensi pola variabilitas iklim. Model peramalan dan prediksi yang demikian sangat membantu dalam menyusun kebijakan penyediaan air untuk proses produksi pertanian. Oleh karena itu keberhasilan sistem produksi pertanian sangat tergantung pada nilai akurasi prediksi anasir iklim.

Adanya isu perubahan iklim global yang secara substantif berpengaruh pada proses produksi pertanian di Indonesia mendorong untuk mengembangkan penelitian tentang perubahan iklim. Namun demikian dengan pendekatan skala global, pengembangan penelitian di Indonesia menghadapi beberapa kendala khususnya karena terbatasnya kualitas dan kuantitas instrumen penelitian. Mengingat pencatatan data anasir iklim secara terestris cukup tersedia, dalam makalah ini didiskusikan suatu cara deteksi awal perubahan iklim melalui pendekatan analisis terestrial vasiasi hujan musiman. Diskusia dilanjutkan dengan perlunya analisis resiko proses produksi pertanian kaitannya perubahan iklim.

Tujuan dan kegunaan
Tujuan penelitian difokuskan pada pengembangan cara deteksi awal perubahan iklim secara terestris atas dasar variasi hujan musiman. Cara deteksi perubahan iklim secara terestris sangat bermanfaat untuk dipakai sebagai acuan dan/atauup pembanding hasil penelitian perubahan iklim dalam skala global. Lebih lanjut dapat bermanfaat dalam pengambilan keputusan yang berkaitan dengan arah kebijakan proses produksi pertanian untuk meminimalkan resiko kegagalan produksi karena faktor iklim dan pengembangan kebijakan atas isu pemanasan global.

METODE PENELITIAN
Pendekatan

* Staf Pengajar Fakultas Teknologi Pertanian Universitas Gadjah Mada
ini menguatkkan teori yang menjelaskan adanya perubahan iklim global yang diturunkan dari teori efek rumah kaca (green house effect theory).

Perkembangan deteksi perubahan iklim secara global tersebut masih belum banyak diikuti melalui pendekatan analisis secara terestrial. Di Indonesia malah hampir tidak pernah dilakukan. Mempertimbangkan bahwa variabelitas anasir iklim terjadi secara berulang sehingga terbentuk siklus memberikan peluang untuk mendeteksi awal perubahan iklim melalui pendekatan statistik dengan teori distribusi frekuensi. Namun demikian, pendekatan ini harus didukung oleh adanya pencatatan data yang cukup lengkap dan panjang.

Pengertian kurun waktu tertentu dapat diartikan bahwa bila hujan tahunan dalam kurun waktu tersebut mengikuti distribusi normal berarti tidak ada perubahan karakteristik hujan, dan sebaliknya. Dengan logika yang sama, karena hujan merupakan bagian dari variabel iklim membawa pada pemikiran bahwa perubahan siklus hujan memberikan indikasi awal adanya perubahan iklim.

Proses kejadian hujan berlangsung secara siklusiodal yang secara matematis sebagai fungsi ruang dan waktu. Fenomena ini biasa disebut sebagai proses yang stokastik (stochastic process). Dengan demikian hujan menjadi bersifat dapat diprediksi (predictable), dapat diperkirakan besarnya (deterministic) (Chow, 1988). Dengan sifat yang demikian ini, melalui pendekatan kaidah statistika dalam bentuk fungsi distribusi normal membuka peluang selain dapat dipakai untuk memprediksi juga untuk mendeteksi perubahan pergerakan siklus secara empiris.

Asumsi dasar yang ditempatkan pada fungsi distribusi normal untuk kepentingan deteksi awal perubahan iklim adalah:

a) Dalam kurun waktu tertentu akan terjadi kecenderungan iklim yang ditunjukkan melalui siklus penuhnya berulang mengikuti distribusi normal.

b) Pergeseran siklus penuh yang cenderung tidak mengikuti distribusi normal dapat diartikan terjadi perubahan ketidakseimbangan iklim.

c) Hujan sebagai kesatuan anasir iklim menjadi variabel tunggal dan dijadikan sebagai suatu cara untuk mendeteksi awal adanya indikasi perubahan iklim.

Secara matematis fungsi distribusi normal baku mempunyai fungsi kerapatan probabilitas:

\[P(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \]

dimana:

\[P(t) \quad \text{fungsi kerapatan probabilitas sebagai fungsi waktu} \]

\[t \quad \text{waktu} \]

Berdasarkan atas asumsi tersebut dipakai untuk melakukan langkah awal dalam mendeteksi adanya perubahan iklim secara terestrial. Namun demikian aplikasi fungsi distribusi normal ini masih belum bisa menjelaskan seberapa besar pergeseran perubahan yang terjadi. Mempertimbangkan bahwa variabelitas hujan musiman juga merupakan bagian dari fenomena alam yang sifatnya berulang maka dimungkinkan untuk mengidentifikasi besarnya pergeseran dengan menggunakan teori peramalan deret waktu dengan variasi musiman aditif (forecasting time series with additive seasonal variation) (Bowerman dan O’Conell, 1979).

Variabelitas hujan musiman di daerah iklim muson tropis pada dasarnya khas. Kekhasan ini dapat dicirikan dari: (i) tegasnya peralihan musim kemarau dan musim hujan, dan (ii) intensitas hujan yang tinggi dan terakumulasi di musin hujan. Periode berulangnya variabelitas hujan musiman ini berputar dalam satu siklus penuh dan berada dalam satu kalang (loop) waktu satu tahun kalender air (water year).

Dengan tipe variasi musiman secara aditif yang dapat dicirikan dari besarnya goyangan musim atas deret waktu adalah bebas (independent) terhadap rata-rata kecenderungannya maka memberikan peluang untuk dipakai dalam peramalan tipe variasi variabelitas hujan musiman di wilayah iklim muson tropis seperti di Indonesia.

Secara matematis dapat ditulis:

\[Y_t = f(TR_t, SN_t) + \varepsilon_t \]

Dimana:

\[Y_t \quad \text{nilai observasi dalam deret waktu selama periode waktu} \]

\[TR_t \quad \text{faktor kecenderungan dari deret waktu dalam periode waktu} \]

\[SN_t \quad \text{faktor musiman dari deret waktu dalam periode waktu} \]

\[f \quad \text{fungsi yang berkaitan dengan nilai observasi dan deret waktu terhadap factor kecenderungan dan faktor musiman} \]

\[\varepsilon_t \quad \text{faktor residu dalam periode waktu} \]

Agritech Vol. 19 No. 4 Tahun 1999 Halaman 189 - 195
Cara Analisa
Dalam kurun waktu tertentu, hujan tahunannya diuji kesesuaian siklus penuhnya terhadap distribusi normal. Kurun waktu ini pada setiap lokasi wilayah sangat spesifik. Namun demikian, dari pengalaman empiris di wilayah iklim muson tropis menunjukkan bahwa selama kurun waktu 20 sampai 30 tahun goyangan variabilitas hujan tahunannya sudah bisa tercapai (Susanto, 1998). Oleh karena itu penetapan kurun waktu di setiap lokasi wilayah cuplikan didasarkan atas keceduran hujan tahunan sebagai fungsi waktu dari pencatatan data selama kurun waktu yang panjang. Untuk mengetahui pergeseran perubahan goyangan variabilitas dipakai selang waktu 5 tahun. Kesesuaian terhadap fungsi distribusi (testing the goodness of fit) dilakukan dengan cara membandingkan nilai cuplikan dengan nilai teoritis dari fungsi frekuensi relatif atau dengan fungsi kerapatan cumulatif (cumulative density function). Tingkat kesesuaian fungsi distribusi frekuensi dilakukan melalui uji chi-kuadrat dengan menggunakan tingkat kepercayaan 5%.

Kurun waktu analisis dari hasil uji chi-kuadrat yang tidak mengikuti distribusi normal kemudian diteruskan dengan analisis besarnya pergeseran secara kuantitatif dengan menggunakan teori peramalan deret waktu dengan variasi musiman aditif (forecasting time series with additive seasonal variation).

HASIL DAN PEMBAHASAN
Lokasi
Agar diperoleh hasil yang optimal, cuplikan lokasi yang dipakai diarahkan pada wilayah yang mempunyai pertumbuhan ekonomi yang cukup tinggi. Pertumbuhan ekonomi secara substantif mempengaruhi peningkatan emisi gas buang karbon dioksida (CO2) dan perubahan peningkatan terbukanya lapangan dari penutup vegetasi. Perubahan-perubahan secara regional ini dihipotesiskan memberikan kontribusi pada perubahan iklim mikro, khususnya hujan. Dengan pertimbangan ini, stasiun hujan di empat lokasi dipakai sebagai wilayah studi dengan kurun waktu analisis dan pergesernya seperti disajikan dalam Tabel 1.

Tabel 1. Lokasi stasiun hujan dan kurun waktu analisis

<table>
<thead>
<tr>
<th>Wilayah / propinsi</th>
<th>Lokasi stasiun hujan</th>
<th>Tahun data tersedia</th>
<th>Kurun waktu analisis (tahun)</th>
<th>Pergeseran (tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jawa Barat</td>
<td>Sukabumi</td>
<td>1954-1996</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>Jawa Tengah</td>
<td>Purworejo</td>
<td>1951-1997</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Bali</td>
<td>Gianyar</td>
<td>1952-1997</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Bali</td>
<td>Tabanan</td>
<td>1952-1997</td>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>

Hasil deteksi awal perubahan iklim

Tabel 2: hasil analisis kesesuaian uji distribusi normal

<table>
<thead>
<tr>
<th>Lokasi</th>
<th>Kurun waktu</th>
<th>Nilai chi-kuadrat</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gianyar, Bali</td>
<td>1952-1971</td>
<td>1,660</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1957-1976</td>
<td>0,887</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1962-1981</td>
<td>0,463</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1967-1986</td>
<td>3,092</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1972-1991</td>
<td>1,482</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1978-1997</td>
<td>6,775</td>
<td>Diterima</td>
</tr>
<tr>
<td>Tabanan, Bali</td>
<td>1952-1971</td>
<td>2,575</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1957-1976</td>
<td>1,97</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1962-1981</td>
<td>1,756</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1967-1986</td>
<td>7,466</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1972-1991</td>
<td>6,540</td>
<td>Diterima</td>
</tr>
<tr>
<td>Purworejo, Jateng</td>
<td>1951-1970</td>
<td>10,220</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1956-1975</td>
<td>2,089</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1961-1980</td>
<td>12,389</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1966-1985</td>
<td>15,048</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1971-1990</td>
<td>15,226</td>
<td>Diterima</td>
</tr>
<tr>
<td>Sukabumi, Jabar</td>
<td>1954-1983</td>
<td>1,125</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1959-1988</td>
<td>2,359</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1963-1993</td>
<td>9,174</td>
<td>Diterima</td>
</tr>
<tr>
<td></td>
<td>1966-1996</td>
<td>10,017</td>
<td>Diterima</td>
</tr>
</tbody>
</table>
Gambar 1 : Hasil analisis kesesuaian fungsi distribusi normal untuk lokasi Kabupaten Tabanan, Bali

Analisis kemudian dilanjutkan untuk mengetahui besarnya pergeresan secara kuantitatif atas perubahan karakteristik hujan tersebut dengan menggunakan deret waktu dengan variasi musiman aditif. Contoh hasilnya untuk masing-masing lokasi studi disajikan dalam Gambar 3 sampai 5.

Dari gambar tersebut nampak bahwa besarnya pergeresan hujan secara musiman berbeda secara kuantitatif dari di setiap lokasi studi dengan arah perubahan di semua lokasi studi cenderung selalu lebih kecil dari kondisi normalnya.

Untuk lebih memperjelas adanya perubahan secara kuantitatif, dilakukan uji t dengan mengambil tingkat kepercayaan 5%. Dari uji yang dilakukan diperoleh nilai \(t \) = untuk setiap lokasi studi selalu lebih besar dari nilai kritik dari tabel pada tingkat kepercayaan 5% sebesar 1,796. Hasil uji ini membuktikan bahwa perubahan tersebut secara statistik dapat diterima. Nilai korelasi hubungan observasi dan prediksi cukup tinggi, antara 0,9946 - 0,9996. Hubungan secara secara grafis yang disajikan pada Gambar 6 sampai Gambar 8 memperkuat hasil analisis.

Gambar 2 : Hasil analisis kesesuaian fungsi distribusi normal untuk lokasi Kabupaten Sukabumi, Jawa Barat.

Diskusi

a) Pemakaan perubahan iklim

Kedua, pengembangan kebijakan atas isu perubahan iklim global. Pemikiran ke arah eksternal ini didasarkan atas adanya dua konvensi: Konvensi Perubahan Iklim (Convection on Climate Change) dan Konvensi Hutan Sedunia (World Forest Convension). Kedua konvensi tersebut didasarkan atas pandangan dari negara-negara...
Gambar 3. Hasil analisis hujan musiman untuk adil kabupaten Tabanan

Gambar 4. Hasil analisis hujan musiman untuk adil kabupaten Purworejo

Gambar 5. Hasil analisis hujan musiman untuk adil kabupaten Sukabumi

Angka di atas memberikan inspirasi bahwa negara berkembang, termasuk Indonesia yang sebagian besar secara alami terletak di wilayah tropis dan kaya akan sumberdaya hayati perlu hati-hati dalam menangani isu pemasan global. Negara manu ju manunggingan cing memberikan tekanan pada negara berkembang untuk ikut berpartisipasi mengatasi masalah pemasanan global. Suatu ajakan yang sangat masuk akal tetapi perlu ditanggapi secara hati-hati, khususnya bila ditelakkan dalam konteks pembangunan. Tabel 3 yang menyajikan tidak seimbangnya emisi gas CO₂ dapat dijadikan sebagai bagian dalam mengembangkan posisi tawar dengan negara maju dalam mengembangkan kebijakan pembangunan di negara berkembang, termasuk Indonesia.

Tabel 3: Emisi CO₂ dari konsumsi bahan bakar fosil dan industri semen, 1987

<table>
<thead>
<tr>
<th>Negara</th>
<th>Juta ton karbon</th>
<th>Emisi karbon % dunia</th>
<th>Kg/kapita</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Negara maju</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amerika Serikat</td>
<td>1.211,6</td>
<td>21,5</td>
<td>5,0</td>
</tr>
<tr>
<td>Kanada</td>
<td>110,0</td>
<td>1,9</td>
<td>4,2</td>
</tr>
<tr>
<td>Masyarakat Eropa</td>
<td>836,5</td>
<td>14,7</td>
<td>2,5</td>
</tr>
<tr>
<td>Austria</td>
<td>14,8</td>
<td>0,3</td>
<td>2,0</td>
</tr>
<tr>
<td>Elandia</td>
<td>0,5</td>
<td>0,009</td>
<td>2,5</td>
</tr>
<tr>
<td>Finlandia</td>
<td>14,6</td>
<td>0,3</td>
<td>3,0</td>
</tr>
<tr>
<td>Malta</td>
<td>0,4</td>
<td>0,007</td>
<td>1,0</td>
</tr>
<tr>
<td>Norwegia</td>
<td>12,3</td>
<td>0,2</td>
<td>2,9</td>
</tr>
<tr>
<td>Swedia</td>
<td>15,5</td>
<td>0,3</td>
<td>1,9</td>
</tr>
<tr>
<td>Swiss</td>
<td>10,9</td>
<td>0,2</td>
<td>1,7</td>
</tr>
<tr>
<td>Australia</td>
<td>64,7</td>
<td>1,1</td>
<td>4,0</td>
</tr>
<tr>
<td>Selandia Baru</td>
<td>5,9</td>
<td>0,1</td>
<td>1,7</td>
</tr>
<tr>
<td>Jepang</td>
<td>247,5</td>
<td>4,4</td>
<td>2,0</td>
</tr>
<tr>
<td>Total</td>
<td>2.555,2</td>
<td>45,0</td>
<td>3,3</td>
</tr>
<tr>
<td>B. Negara Eropa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timur Albania</td>
<td>2,6</td>
<td>0,005</td>
<td>0,8</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>33,7</td>
<td>0,6</td>
<td>3,7</td>
</tr>
<tr>
<td>Cekoslovakia</td>
<td>65,6</td>
<td>1,2</td>
<td>4,2</td>
</tr>
<tr>
<td>Hongaria</td>
<td>20,9</td>
<td>0,4</td>
<td>2,0</td>
</tr>
<tr>
<td>Polandia</td>
<td>128,7</td>
<td>2,3</td>
<td>3,4</td>
</tr>
<tr>
<td>Romania</td>
<td>58,4</td>
<td>1,0</td>
<td>2,5</td>
</tr>
<tr>
<td>Rusia</td>
<td>1034,1</td>
<td>18,2</td>
<td>3,6</td>
</tr>
<tr>
<td>Yugoslavia</td>
<td>34,4</td>
<td>0,6</td>
<td>1,5</td>
</tr>
<tr>
<td>Total</td>
<td>1.378,4</td>
<td>24,2</td>
<td>3,4</td>
</tr>
<tr>
<td>C. Negara</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berkembang</td>
<td>154,9</td>
<td>2,7</td>
<td>0,2</td>
</tr>
<tr>
<td>India</td>
<td>34,9</td>
<td>0,6</td>
<td>0,2</td>
</tr>
<tr>
<td>Indonesia</td>
<td>596,1</td>
<td>10,5</td>
<td>0,5</td>
</tr>
<tr>
<td>RRC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Dunia</td>
<td>785,9</td>
<td>13,8</td>
<td>0,4</td>
</tr>
<tr>
<td>Total Duni</td>
<td>6.960,0</td>
<td>100,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Masyarakat Eropa: Belgia, Denmark, Inggris, Irlandia, Jerman, Luksemburg Nederland, Perancis, Portugal, Spanyol dan Yunani

Sumber: World Resources 1990/91, WRI & IIED, 1990 (Sumanwoto, 1991)

KESIMPULAN DAN SARAN

Kesimpulan
Beberapa kesimpulan yang dapat ditarik adalah:

b. Besarnya perubahan secara kuantitatif dapat diprediksi melalui pendekatan peramalan deret waktu dengan variasi musiman aditif (forecasting time series with additive seasonal variation).

c. Pendekatan terestris membuktikan perannya dalam mendukung adanya temuan perubahan iklim global.

Saran

a. Secara internal, adanya fenomena perubahan iklim perlu ditanggapi dengan mengantisipasinya dengan melakukan langkah nyata, khususnya dalam peramalan resiko kegagalan produksi pertanian karena faktor iklim.

b. Secara eksternal, perlu ditanggapi dengan mempersiapkan daya tawar terhadap negara maju melalui pengembangan kebijakan atas isu perubahan iklim global agar pelaksanaan pembangunan tidak mengalami hambatan karena faktor ini.

UCAPAN TERIMA KASIH

Makalah dapat diterbitkan atas bantuan analisis data dari Ir Suratno dan masukan dari Dr Ir Putu Sudira, MSc, masing-masing alumni dan staf pengajar Fakultas Teknologi Pertanian, UGM. Untuk itu diucapkan terima kasih.

DAFTAR PUSTAKA

Management, Volume II. Faculty of Agricultural Technology, UGM.

