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ABSTRACT

The high dependence on flour imports is a significant challenge to overcome by processing local food ingredients 
through diversification. To address this challenge, the use of MOCAF (Modified Cassava Flour) as a substitute for 
wheat flour has been carried out in the manufacture of wet and dry noodles, along with analog rice, and bread. 
The optimization of MOCAF production from beta-carotene-rich cassava depends on the selection of appropriate 
equipment technology and drying process. Therefore, this study aimed to analyze the effect of drying method on 
MOCAF characteristics of beta-carotene-rich cassava genotype. The analysis was carried out using two methods, 
namely sun drying for 3-4 days and oven drying at 60oC for 24 hours. Parameters analyzed included viscosity, 
solubility, syneresis, Near Infra-Red analysis, proximate analysis, and Scanning Electron Microscope (SEM). The 
results showed that drying affected the physicochemical properties of MOCAF, including viscosity, solubility, 
and syneresis. NIR (Near-infrared) and proximate analysis showed that drying process affected the decrease 
in moisture, ash, protein, and fat content, along with an increase in crude fiber, and dry fiber matter content. 
Furthermore, SEM microstructural analysis resulted in the reformation of starch granules, characterized by changes 
in morphology and structure, such as the separation of irregular spherical shapes, and hollowness.

Keywords: Beta-carotene; MOCAF; proximate; NIR (Near infrared); SEM (Scanning Electron Microscope); types 
of drying method

INTRODUCTION

Generally, cassava is sold raw and converted 
into processed products such as tape, alcohol, tapioca 
flour, and MOCAF (Modified Cassava Flour) (Akinrele, 
1964). Among these products, MOCAF is cassava flour 
that has been physically, chemically, and biologically 
modified, possessing similar characteristics to wheat 
flour (Adegunwa et al., 2011). This product also has a 
rougher texture serving as a substitute for flour at a ratio 
of 30%-100, thereby reducing the cost of consuming 

wheat flour by 20%-30% (Alonso-Gomez et al., 2016, 
Julianti et al., 2011). In Indonesia, the consumption of 
wheat flour as a source of carbohydrates has reached 
19.2 kg/capita/year, resulting in a corresponding 
increase in wheat imports to 6 million tonnes/year 
(Ariwibowo and Paramita, 2018). This high dependence 
on flour imports must be overcome by processing local 
food ingredients. Additionally, the population growth in 
the country occurs at aapproximately 1.5% each year, 
showing that over 3 million people require access to 
food annually (Ariwibowo and Paramita, 2018). This 
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phenomenon poses a significant challenge in meeting 
the food needs of Indonesians.

An effective strategy to address this challenge is 
diversification by widening the types of food consumed, 
including sources rich in both energy and essential 
nutrients, to meet nutritional needs in terms of quantity 
and quality (Julianti et al., 2011 and Suriany et al., 2020). 
One of the non-rice food diversification is the use of 
carbohydrate-rich alternatives (Oyewole and Odunfa, 
1989). In this context, the use of MOCAF as a substitute 
for wheat flour has been explored in the manufacture of 
wet and dry noodles, along with analog rice, and breads 
(Nakamura and Park, 1975). MOCAF is rich in fiber, 
gluten-free, and low in fat, capable of preventing colon 
cancer, with a hypoglycemic effect (Ihromi et al., 2018, 
Julianti et al., 2011). MOCAF does not contain gluten 
and can be processed to produce resistant starch type 3 
(RS3), serving as food ingredient for people with diabetes 
(Julianti et al., 2011). The development of MOCAF as a 
functional food ingredient is attributed to innovations 
such as MOCAF beta-carotene flour. Specifically, beta-
carotene abundant in cassava is used for various 
metabolic functions in humans as a source of provitamin 
A. According to Rahman et al. (2020) provitamin A is an 
antioxidant that protects cells from damage caused by 
free radicals.

The development of MOCAF production from beta-
carotene-rich cassava can be optimized by selecting good 
equipment technology and drying processes. Generally, 
beta-carotene-rich cassava is used in the production 
process is attributed to antioxidant properties, which are 
relatively stable against high temperatures and heating 
(Diniyah et al., 2018; Julianti et al., 2011). In this study, 
oven drying and sun drying methods were selected 
due to their user-friendliness, ease of access, and cost-
effectiveness. These methods have been widely applied by 
Micro, Small, and Medium Enterprises in the production of 
MOCAF (Diaz et al., 2018). Specifically, drying is used to 
reduce the moisture content in food ingredients and extend 
the shelf life of the material, lower deterioration caused by 
microorganism activity, and minimize postharvest losses 
(Diaz et al., 2018). Traditionally, drying using the sun heat 
depends on weather conditions, posing a challenge in 
controlling the quality of resulting MOCAF products. This 
limitation can be overcome by using oven dryer, which 
enables precise adjustments to time and temperature, 
thereby superior control over product quality (Diaz et 
al., 2018, Cardenas and De Buckle, 1980). According 
to Aisah et al. (2021), drying process is essential during 
the production of MOCAF, which requires a maximum 
moisture content requirement of 13%.

The chip drying method is prevalently used in MOCAF 
industry, but the dependence on sun heating has several 

limitations. These include reliance on weather conditions, 
difficulty in controlling and ensuring uniformity during 
drying process, requirement for large area, susceptibility 
to contamination, high risk of loss/shrinkage, longer time, 
and high drying rate (Diniyah et al., 2018; Mestres Rouau, 
1997). The development of chip dryers has been carried 
out such as an oven-drying machine (Diaz et al., 2018). 
Although this method can increase work productivity 
and efficiency, the resulting MOCAF chip is brownish-
white after 6 hours at 60°C due to the Maillard reaction 
on cassava (Diaz et al., 2018). The Maillard reaction is 
caused by an oxidation and dehydration between the 
amino group of the protein and the carboxyl of the 
reduced sugar contained in cassava, triggering a brown 
color due to the formation of melanoidin (Emannuel et 
al., 2012, Julianti et al., 2011). The effect of sun drying, 
oven, and their combination on the starch content of 
MOCAF and cassava flour shows a significant effect on 
the resulting products (Diaz et al, 2018; Demiate et al., 
1999). The selection of cassava varieties, fermentation, 
and selection of the appropriate drying type can produce 
different characteristics of MOCAF. Therefore, this study 
aimed to further analyze the effect of drying type on the 
characteristics of MOCAF from beta-carotene-rich yellow 
cassava varieties to obtain optimal results.

METHODS

Materials

In this study, the sample used consisted of yellow 
cassava from the bokor genotype, characterized by 
high beta-carotene content, aged between 8 to 12 
months from Boyolali, Central Java. Additionally, Bimo-
CF was used in the starter fermentation process for 24 
hours during MOFAC production. The equipment used 
included a knife, fermentation tub, chips slicer, spinner, 
thermometer, litmus paper, balance, hammer mill, and 
packaging. This study was conducted at PT. Solution 
MOCAF, Surakarta, Central Java. Meanwhile, the 
analysis of the physicochemical properties of MOCAF 
was carried out at the Muhammadiyah University of 
Surakarta Chemical Engineering Laboratory. Flour 
quality was examined at the Research Center for Food 
Technology, while processing was conducted at BRIN 
Gunungkidul, Yogyakarta, and the Research Center for 
Applied Microbiology at BRIN Bogor, West Java.

Production of MOCAF Rich in Beta-Carotene

The production of MOCAF started with sorting 
cassava of the Bokor genotype at the age of 8-12 months 
from the skin by peeling, followed by soaking in water 
and washing at 30ºC. Subsequently, clean cassava was 
sliced thinly to form a chip slicer, with a thickness of 0.2-
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0.3 cm. Fermentation was carried out within 24 hours 
using a plastic container filled with water, where 10 g 
of Bimo-CF starter was added to 10 kg of cassava. After 
fermentation, cassava chips were soaked in 0.3% sodium 
bisulfite to protect against loss of beta-carotene content 
during drying process. Before drying, cassava chips 
were put into a spinner machine to reduce the moisture 
content, followed by drying process using sunlight for 
3-4 days and oven at 60oC for 24 hours. Cassava chip 
flouring process was carried out using a hammer mill, 
sifted with a 100-mesh sieve to obtain a fine quality, and 
packaged as MOCAF using aluminum (Cardenas and De 
Buckle, 1980; Martinez and Quiroga, 1988).

Viscosity Test

A total of 5 g of MOCAF was dissolved in 500 
mL of distilled water and stirred for one minute. The 
solution was heated using a hot plate with a maximum 
temperature of 500 °C and stirred for 20 minutes 
to increase the temperature to reach the boiling 
point using thermometer (Moorthy et al., 1993). 
Subsequently, the hot plate was turned off, the gel 
formed was cooled to 50 °C, followed by viscosity 
tested using a viscometer with spindle number 4. Flour 
viscosity was measured at 29 °C with a concentration 
of 5% using using a Stormer viscometer.

Solubility Test

A total of 1 g of the sample was dissolved in 10 mL 
of distilled water and stirred for one minute. The solution 
was heated to 60°C for 30 minutes in a water bath, 
while the supernatant and paste were separated using 
a centrifuge at 3000 rpm for 20 minutes. Subsequently, 
5 ml of the supernatant was collected, put in a crucible, 
and dried in an oven at 100°C, and the dry weight was 
recorded (Nakamura and Park, 1975). The following 
formula calculates the solubility value (Equation 1).
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Table 1. Treatment of drying method to produce MOCAF

Treatment Drying methods Fermentation 
time Starter

1 Sun heat (3-4 days) 24 hours Bimo CF

2 Oven (60 °C for 24 
hours) 24 hours Bimo CF

Control Sun heat (3-4 days) 24 hours -
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SEM (Scanning Electron Microscopy) Analysis

In the SEM test, the sputter coating (Hitachi E102 Ion 
Sputter, Tokyo, Japan) was used to cover MOCAF samples, 
which were analyzed with an accelerating voltage of 20.0 
kV. A Hitachi S 2400 SEM (Hitachi, Tokyo, Japan) was 
used for recording and analysis. Subsequently, sample 
images were captured with a magnification of 1,000x 
(Ying et al., 2013) and the particle size of MOCAF was 
analyzed using the free Image-J software for processing 
digital images created at the Research Services Branch, 
National Institute of Mental Health, Bethesda (Maryland, 
USA) (Collins 2007).

Proximate Analysis

Proximate analysis for MOCAF, such as moisture, 
ash, fat, protein, crude fiber content, and dry matter 
carried out based on the method from AOAC (2010).

Statistical Data Analysis 

ANOVA analysis was conducted to assess the 
potential differences in the variables tested, namely 
viscosity, solubility, syneresis, Near Infra-Red (NIR), and 
proximate analysis. The test was carried out in triplicate 
at a significance level of 95% (α = 5%) with Duncan's 
further test (Multiple Range Test). Subsequently, the 
variance analysis was conducted using SPSS (Statistical 
Package for Social Science) 26.00 software.

RESULTS AND DISCUSSION

MOCAF Viscosity

Viscosity is an essential physical property of flour, 
defined as the internal frictional force in a liquid or fluid 
(Lopulalan et al., 2016). In this study, the viscosity of 
MOCAF sample ranged from 1.6 - 2.6 mPa.s, as shown in 
the graph below.

The results of MOCAF viscosity test showed that the 
viscosity value of the sun-dried sample was higher than 
the control, at 2.2 mPa.s and 1.93 mPa.s, respectively. 
Oven drying method showed a greater viscosity value in 
control sample at 2.3 mPa.s, as presented in Figure 1. 
This difference is attributed to the effect of temperature 
at 60 °C and 70 °C, where the starch granules started 
absorbing water, resulting in minimal swelling and low 
viscosity. At 80 °C and 90 °C, the viscosity increased, 
showing that the starch granules were experiencing 
maximum swelling along with viscosity. This process 
continued until the peak viscosity, followed by a decrease 
due to the bonding forces between the expanded and 
gelatinized starch granules which were reduced by high 
heating and vigorous stirring. According to de Barros 
Mesquita et al. (2016), the parameters of starch paste 

provided evidence that starch was cooked during heating 
and cooling cycles. This was because excess water in 
the starch granules passed through a transition phase 
known as gelatinization during heating at a significant 
temperature (Al-Fa'izah et al., 2017).

The viscosity results showed that the highest value 
was 2.3 mPa.s in the control sample using the oven drying 
method. Meanwhile, the lowest value was 1.93 mPa.s 
was obtained in the control with the sun drying method. 
The relatively stable values for the sun and oven-drying 
samples were 2.2 mPa.s and 2.23 mPa.s. Generally, 
starch has a high absorption capacity when the water 
suspension is heated at 55 °C to 65 °C, and the point 
where starch granules break down is called gelatinization 
temperature. In this study, gelatinization temperature 
affected changes in the viscosity of the starch solution, 
with increasing heating temperature resulting in reduced 
viscosity. Similarly, Erni et al. (2018) reported that 
gelatinization caused the amylose bonds to come closer 
together due to hydrogen bonds. Based on the results, 
drying process was observed to cause shrinkage due to 
the release of water, leading to the formation of stable 
bioplastic gel.

MOCAF Solubility

Solubility is the ability of a material including 
starch to dissolve in water due to the presence of non-
covalent bonds between starch molecules. When starch 
is heated, hydration occurs within starch granules, 
causing molecules to disperse into the media with short 
chains. Consequently, higher temperature facilitates more 
starch molecules from the starch granules. According to 
Mulyandari (1992), there would be a breakdown of starch 
granules during heating, showing that higher amylose 

Notes: The same letters in the bar chart show values that are not 
significantly different with a significance level of 95% (α = 5%), 
after statistical testing with Duncan on SPSS 26.0

Figure 1. The effect of drying process on the viscosity 
of MOCAF
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non-covalent bonds between starch molecules. When starch is heated, hydration occurs within starch 
granules, causing molecules to disperse into the media with short chains. Consequently, higher 
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content facilitated the release of more amylose granules. 
In this study, solubility of MOCAF samples with the 
variation of drying method ranges from 1.16 to 1.72%. 
The measurement results of MOCAF solubility test are 
shown in the graph below.

The results of solubility test for MOCAF sample by 
sun drying had a lower value of 1.27%, while the control 
showed a higher value of 1.4%. Similarly, oven drying also 
had lower results than the control samples, with values 
of 1.2% and 1.63%, respectively. Hersoelistyorini et al. 
(2015) reported that solubility value of MOCAF fermented 
with Bimo-CF starter would produce a lower value 
compared to the control without a starter, resulting in an 
acquisition value of 1 4% and 1.9%, respectively. This 
difference in viscosity was influenced by the non-uniformity 
of drying time used during MOCAF manufacturing process. 
Therefore, increasing drying temperature and time would 
significantly improve solubility of MOCAF. Diaz et al. (2018) 
reported that longer drying time and higher temperature 
increased solubility due to high amylose content.

Based on Figure 2, the highest value of 1.63% in 
solubility test was in the control sample using the oven 
drying method, while the lowest value at 1.2% was 
obtained using oven drying method. Solubility value in the 
sample using sun drying and the control were found to 
be 1.27% and 1.4%, respectively. These results showed 
that the interaction between drying time and temperature 
significantly affected high solubility. The significant 
difference observed showed variations in the structure 
and solubility of starch, indicating varied chain length and 
distribution (Diniyah et al., 2018).

Syneresis of MOCAF

Syneresis is the release of water from food when 
the components of the ingredients are not closely bound 

to the water (Dipowaweso et al., 2018). Based on 
observation of MOCAF syneresis, the amount of water 
released during MOCAF production decreased with the 
duration of storage, as shown in Figure 3. 

The results are comparable to study conducted 
by (Putri et al., 2018), showing a decrease in syneresis 
value with prolonged storage. This suggested that a 
longer storage process led to a lower release of water 
from starch paste. Moreover, a higher syneresis value 
suggested greater starch retrogradation, capable of 
affecting the shelf life of food products.

Samples with the oven drying method had a 
lower syneresis value compared to sun drying method 
due to the amylose content in MOCAF. Moreover, 
high amylose content causes a higher possibility of 
retrogradation because amylose will bind again after 
gelatinization at low temperatures (cooling) (Winarno, 
2004). This shows that when amylose binds strongly, 
the amount of water released is increased. In this 
study, starch syneresis value with the sun-drying 
method was higher than with the oven-drying method 
due to the amylose content (Putri et al., 2018). 
MOCAF tends to form stable gel and experience less 
retrogradation compared to native starch (tapioca) 
due to high amylose content (Zhu, 2015). Julianti et al. 
(2011) reported that amylose covering starch granules 
in MOCAF tended to inhibit changes in viscosity during 
the cooling process.

NIR MOCAF

NIR spectroscopy is a fast method for measuring 
the spectrum, without chemical waste. This method 
has been widely used in several sectors including food 
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industry, particularly to support precision agriculture 
(Man and Moh, 1988; Pasquini, 2003). Büning-Pfaue 
and Kehraus (2001) stated that NIR spectroscopy 
method is reliable, inexpensive, fast, and capable of 
describing the fingerprint of food product compounds 
(Lengkey et al., 2013). The results of NIR test for 
MOCAF are shown in Table 2.

NIR analysis of MOCAF can determine the value 
of water, fat, protein, fiber, alanine, glycine, glutamic 
acid, and methionine. Based on the results, the value 
of moisture content in sun-dried and oven-dried 
samples ranged from 11.34% to 12.92%, while the 
control varied between 11.93% and 13.39%, as shown 
in Table 2. The moisture content obtained from the 
results meets the quality standards of MOCAF according 
to SNI 7622-2011, which is below 13%. Based on data 
from the Directorate of Nutrition, Ministry of Health 
of the Republic of Indonesia (2004), for every 100 g 
of cassava, there is 62.50 g of water and 60.00 g of 
yellow cassava (Yani & Akbar, 2018). Drying process 
on cassava slices caused free water to evaporate from 
within the raw material due to prolonged drying time. 
Therefore, faster drying process, resulted in reduced 
water evaporation and vice versa (Lubis 2008; Erni 
et al., (2018). The amount of water evaporated is 
influenced by the duration of material contact with heat, 
as longer contact time, resulted in greater evaporation 
(Wulan, 2018). A maximum moisture content of 13% 
is crucial for optimal quality of MOCAF, showing the 
significance of thorough drying to enhance shelf life 
(Yani & Akbar, 2018).

The fat content in the sun-dried and oven-dried 
MOCAF samples had an average value of 1.66% and 
1.73%, while the control had an average value of 1.69% 
and 1.88%. Furthermore, the lowest fat content in the 
sun-dried MOCAF sample was 1.66%. However, these 
values did not meet the chemical composition of MOCAF 
ranging from 0.4-0.8% according to Codex Stan 176-
1989, as reported by Julianti et al. (2011). The variation 
in results is attributed to several factors, including the 
high content of fatty acids in cassava caused by the 
secretion of microbes. Oyewole and Odunfa (1988) 
reported that most of the constituent mass of microbial 
cells is protein, although there is a small number of 
phospholipids. According to Aisah et al. (2021), a long 
soaking time makes the cell tissue more damaged and 
perforated, facilitating the diffusion of fat in the cell.

The protein content value in sun-dried and oven-
dried MOCAF samples was 4.24% and 3.72%, while 
the control was 4.1% and 3.58%, respectively. Based 
on the results, the highest protein content in the sun-
dried MOCAF sample was 4.24%, while the lowest in 
oven drying method was 3.58%. Julianti et al. (2011) 
reported that 1.36 g of protein in 100 g of cassava 
decreased due to a prolonged drying process. According 
to Diaz et al. (2018), a significant increase in drying time 
and temperature would degrade amino acids contained 
in protein. This condition causes the protein analysis 
results detected in flour small (Emannuel et al., 2012).

Fiber content in sun-dried and oven-dried MOCAF 
samples had an average value of 2.46% and 2.12%, while 
the control had 2.46% and 2.4%, respectively. However, 

Table 2. The effect of drying method on the NIR test

Parameter 
(% dry base)

Drying method

Sun heat Oven Control 
(sun heat)

Control
(oven)

Moisture content (%) 12,92±0.12a 11,34±0.10a 13,39±0.15a 11,93±0.09a

Fat (%) 1,66±0.07c 1,73±0.14c 3,72±0.21a 2,12±0.15b

Protein (%) 4,24±0.17a 3,72±0.23b 4,10±0.18a 3,58±0.20b

Alanin (%) 0,10±0.01a 0,9±0.03a 0,07±0.01a -

Glisin (%) 0,12±0.08a - - -

Glutamic acid (%) 0,54±0.05a - 0,32±0.03b -

Methionine (%) 0,14±0.02a - 0,16±0.01a -

Fibre (%) 2,47±0.12a 2,12±0.10a 2,46±0.12a 2,40±0.15a

Phosphor (%) 0,21±0.04a - - -

Note: - (not identified)
Notes: The same letters in the row of table show values that are not significantly different with a significance level of 95% (α = 5%), after 
statistical testing with Duncan on SPSS 26.0
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fiber content obtained in all samples meets the chemical 
composition of MOCAF according to Codex Stan 176-1989 
in Julianti et al. (2011), which ranged from 1.9 to 3.4%. 
Yani & Akbar (2018) reported that fiber in cassava would 
experience lysis (decomposed) into glucose by lactic acid 
bacteria (LAB) naturally, causing a significant decrease 
with increasing fermentation time. Prayitno et al. (2018) 
stated that the amount of crude fiber increased due to a 
rise in the concentration of MOCAF. 

During fermentation, protein breakdown showed 
the presence of amino acids such as alanine, glycine, 
glutamic acid, and melatonin, as identified through NIR 
test results in Table 2. Analysis of the alanine content 
of MOCAF in fermentation using a starter ranged from 
0.10% to 0.9%, while sun-dried control showed a value 
of 0.07. Furthermore, glycine and phosphorus content 
was only identified in sun-dried sample at 0.12% and 
0.14%, respectively. Analysis of methionine content 
which was only identified using sun-dried and control 
samples was 0.14 and 0.16%, respectively.

MOCAF Proximate Test

The results of proximate test on MOCAF samples 
showed the values for dry matter, moisture content, ash, 
crude protein, crude fat, and crude fiber. Table 3 shows 
the dry matter values in each sample, which range from 
89.13% to 92.84%. In MOCAF sample, the highest 
dry matter value of 92.84% value was obtained using 
oven drying method. Based on the control sample, oven 
drying method had a higher value of 92.1% compared 
to the sun drying at 89.13%. In comparison, sun-dried 
sample and control have values of 89.81% and 89.13%, 
while oven drying had 92.84% and 92.1%, respectively, 
as shown in Table 3. Drying process on cassava slices 
caused free water to evaporate from the raw material. 
Diniyah et al., (2018) stated that the high moisture 
content of MOCAF starch produced a low dry matter due 
to significantly high evaporation of water, causing lower 
yield. The difference between the results of proximate 

and NIR analysis on the nutritional characteristics of 
MOCAF was due to variations in the working principles 
of both methods. Consequently, variation and diversity 
of data could be obtained from the results of the 
nutritional analysis of MOCAF.

Proximate analysis results showed that the moisture 
content in MOCAF sample ranged from 7.9% to 10.87%, 
with the highest and lowest value obtained using sun 
drying and oven drying method, respectively, as shown 
in Table 3. Yerizam et al. (2019) reported that drying rate 
significantly influenced the decrease in moisture content 
of MOCAF. Moreover, the difference in results was caused 
by the magnitude of drying rate that occurred during the 
process. Westby and Cereda, (1994) reported that a 
greater drying rate would result in a higher decrease in 
moisture content in cassava. According to SNI standard 
(SNI 7622-2011), a value of 12% moisture content is 
allowed in cassava, In this study, a different value was 
obtained in MOCAF sample but still met the standard 
limit, showing suitability for storage and processing into 
various food products (SNI, 2011).

Proximate analysis showed that the ash content in 
MOCAF samples ranged from 0.65% to 0.89%. Based on 
the results, the highest and lowest value was obtained 
using oven drying and sun drying methods, respectively. 
In comparison, control sample in oven drying had a 
higher value of 0.73% compared to 0.65% obtained 
using sun drying method. Diaz et al., (2018) reported 
that the increase in ash content occurred because longer 
drying time and temperature, resulted in more water 
evaporation. According to (Aisah et al., 2021), drying 
process resulted in the decomposition of water molecule 
bonds (H2O), causing a significant increase in sugar, fat, 
minerals, and ash content. Although the ash content 
of MOCAF samples was different, the value obtained 
was still within the standard limits of SNI (0.17-0.74%) 
(Lopulalan et al., 2016).

Protein content in proximate analysis of food is 
the amount of nitrogen (N) in the material (Priandono 

Table 3. The effect of drying method on proximate test

Treatment  Drying method
Proximate characteristics (% dry base)

Dry material 
(%)

Moisture 
content (%)

Ash content 
(%)

Total protein 
(%) Total fat (%) Crude fiber 

(%)

1 Solar heat 89,81±0.64b 10,18±0.17a 0,65±0.09c 0,86±0.12b 0,79±0.13a 1,50±0.04c

2 Oven 92,84±0.38a 7,15±0.29b 0,89±0.13a 1,04±0.15a 0,51±0.09b 1,75±0.08b

Control Solar heat 89,13±0.27b 10,87±0.35a 0,65±0.08c 0,94±0.07b 0,72±0.10a 1,35±0.12c

Control Oven 92,10±0.25a 7,90±0.73b 0,73±0.04b 0,89±0.05b 0,78±0.06a 2,53±0.06a

Notes: The same letters in the column table show values that are not significantly different with a significance level of 95% (α = 5%), after 
statistical testing with Duncan on SPSS 26.0
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Protein content in proximate analysis of food is the amount of nitrogen (N) in the material 
(Priandono et al., 2018). In this study, proximate analysis results showed that the protein content in 
MOCAF sample ranged from 0.86% to 1.04%, with the highest and lowest values obtained in oven drying 
and sun drying methods, respectively. Meanwhile, the control in sun drying method had a higher value of 
0.94% compared to 0.89% obtained in oven drying sample. The difference in results was caused by 
heating during drying, as high temperatures resulted in denaturation and protein degradation, leading to 
a reduction in the function of essential amino acids (Diaz et al., 2018). Priandono et al. (2018) reported 
that heating caused the protein to denature, thereby reducing the functional properties. Heating can 
damage the amino acids, as the resistance of protein to heat is closely related to the amino acids content 
(Diaz et al., 2018). This phenomenon causes protein content to decrease with the increasing length of 
drying process (Diaz et al., 2018). 

Proximate analysis results showed that crude fat in MOCAF samples ranged from 0.51% to 
0.79%, with the highest and lowest values obtained in sun drying and oven drying methods, respectively. 
In comparison, control sample in oven drying method had a higher value of 0.78% compared to 0.72% 
obtained using sun drying. Oyewole and Afolami, (2001) reported that the major cause of food spoilage is 
oxygen, accelerating the breakdown of fat through the occurrence of oxidative rancidity. Oyeyinka et al. 
(2019) stated that a long soaking time made the cell tissue more damaged and perforated, resulting in 
higher diffusion of fat content in the cell. In this study, a significant decrease was observed in fat content 
during the fermentation process. Aisah et al. (2021) reported that a decrease in fat content was possible 
during the fermentation process, as microbes required energy obtained from fat. Based on the results, 
MOCAF sample's fat content met the SNI 7622-2011 required quality standards, with a maximum value of 
0.806% (Iswari et al., 2016). 

The results of proximate analysis showed that crude fiber yield in MOCAF sample ranged from 
1.35% to 2.53%, with the highest and lowest value obtained using oven drying and sun drying methods, 
respectively. In comparison, the control samples for both methods had a highest and lowest value of 
1.75% and 1.5%, respectively. The decrease in crude fiber content was caused by the lysis of the 
lignocellulosic and ligno-hemicellulose bonds due to the presence of cellulolytic bacteria (Yani & Akbar, 
2018). Based on the results, fat content of MOCAF sample met quality standards of 2% as required by 
SNI 7622-20111.  

 
SEM Analysis on MOCAF 
 

SEM is a reliable method for testing and analyzing morphology of matrices at the 
micro/nanoscale. This method is an electron microscope that uses an electron beam reflected with high 
energy to describe the surface shape of the analyzed material (Julianti et al., 2011). The results of the 
observations made in this study are shown in Figure 4. 
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Figure 4. The shape of MOCAF granules in the sun drying method (A), oven (B), sun drying control (C), 
and oven drying control (D) 

 
The results of SEM analysis of MOCAF samples showed that the largest starch granule sizes 

ranged from 15.3µm – 20.0µm, while the smallest varied between 3.77µm and 4.47µm. The morphology 
of MOCAF sample obtained the structure of large irregular round granules. In MOCAF samples A and B, 
the granules were irregularly rounded, and some parts had holes. Meanwhile, in the control samples C 
and D, the granules were irregularly round, the size was more non-uniform, and some parts were 
observed to have holes. Samples A and B presented in Figure 4 appeared coarser and unified due to the 
process of MOCAF production using a modified fermentation process, where enzymes used degraded the 
cell wall cellulose. This phenomenon resulted in the liberation of starch granules, which led to the 
separation of starch granules. 

Lopulalan et al. (2016) reported that the morphological structure of starch changed after 
modification. Based on the results, the morphology of ozone-modified starch had a rougher and more 
fibrous surface, showing breakage of starch crystals due to the high influence of water concentration 
absorbed. Additionally, the application of microwave heating affected changes in the morphological 
structure of MOCAF (Budiarti & Sulistiawati, 2019). The grain structure of MOCAF, rich in beta-carotene, 
appeared rounded, with some parts crumbling into flakes. The grinding and sifting processes resulted in 
irregular morphology, potentially causing damage to starch granules (Sefrienda et al., 2020). Zhang et al. 
(2018) reported that the morphological structure of starch granules would be damaged with increasing 
temperatures above 60 °C. 

 
CONCLUSION 
 

In conclusion, this study showed that drying methods significantly affected the physicochemical 
properties of MOCAF, causing differences in viscosity, solubility, and decreased syneresis. Based on the 
results, a decrease was observed in water, ash, protein, and fat content, followed by an increase in fiber, 
crude, and dry matter content. MOCAF microstructure with various drying methods resulted in the 
reformation of starch granules due to changes in morphology and structure, which were separated into 
irregular round and hollow shapes. 
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cell wall cellulose. This phenomenon resulted in the liberation of starch granules, which led to the 
separation of starch granules. 

Lopulalan et al. (2016) reported that the morphological structure of starch changed after 
modification. Based on the results, the morphology of ozone-modified starch had a rougher and more 
fibrous surface, showing breakage of starch crystals due to the high influence of water concentration 
absorbed. Additionally, the application of microwave heating affected changes in the morphological 
structure of MOCAF (Budiarti & Sulistiawati, 2019). The grain structure of MOCAF, rich in beta-carotene, 
appeared rounded, with some parts crumbling into flakes. The grinding and sifting processes resulted in 
irregular morphology, potentially causing damage to starch granules (Sefrienda et al., 2020). Zhang et al. 
(2018) reported that the morphological structure of starch granules would be damaged with increasing 
temperatures above 60 °C. 

 
CONCLUSION 
 

In conclusion, this study showed that drying methods significantly affected the physicochemical 
properties of MOCAF, causing differences in viscosity, solubility, and decreased syneresis. Based on the 
results, a decrease was observed in water, ash, protein, and fat content, followed by an increase in fiber, 
crude, and dry matter content. MOCAF microstructure with various drying methods resulted in the 
reformation of starch granules due to changes in morphology and structure, which were separated into 
irregular round and hollow shapes. 
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et al., 2018). In this study, proximate analysis results 
showed that the protein content in MOCAF sample 
ranged from 0.86% to 1.04%, with the highest and 
lowest values obtained in oven drying and sun drying 
methods, respectively. Meanwhile, the control in sun 
drying method had a higher value of 0.94% compared to 
0.89% obtained in oven drying sample. The difference 
in results was caused by heating during drying, as high 
temperatures resulted in denaturation and protein 
degradation, leading to a reduction in the function of 
essential amino acids (Diaz et al., 2018). Priandono et 
al. (2018) reported that heating caused the protein to 
denature, thereby reducing the functional properties. 
Heating can damage the amino acids, as the resistance 
of protein to heat is closely related to the amino acids 
content (Diaz et al., 2018). This phenomenon causes 
protein content to decrease with the increasing length 
of drying process (Diaz et al., 2018).

Proximate analysis results showed that crude fat 
in MOCAF samples ranged from 0.51% to 0.79%, with 

the highest and lowest values obtained in sun drying 
and oven drying methods, respectively. In comparison, 
control sample in oven drying method had a higher 
value of 0.78% compared to 0.72% obtained using sun 
drying. Oyewole and Afolami, (2001) reported that the 
major cause of food spoilage is oxygen, accelerating the 
breakdown of fat through the occurrence of oxidative 
rancidity. Oyeyinka et al. (2019) stated that a long 
soaking time made the cell tissue more damaged and 
perforated, resulting in higher diffusion of fat content 
in the cell. In this study, a significant decrease was 
observed in fat content during the fermentation process. 
Aisah et al. (2021) reported that a decrease in fat 
content was possible during the fermentation process, 
as microbes required energy obtained from fat. Based 
on the results, MOCAF sample's fat content met the SNI 
7622-2011 required quality standards, with a maximum 
value of 0.806% (Iswari et al., 2016).

The results of proximate analysis showed that 
crude fiber yield in MOCAF sample ranged from 1.35% 
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to 2.53%, with the highest and lowest value obtained 
using oven drying and sun drying methods, respectively. 
In comparison, the control samples for both methods 
had a highest and lowest value of 1.75% and 1.5%, 
respectively. The decrease in crude fiber content was 
caused by the lysis of the lignocellulosic and ligno-
hemicellulose bonds due to the presence of cellulolytic 
bacteria (Yani & Akbar, 2018). Based on the results, fat 
content of MOCAF sample met quality standards of 2% 
as required by SNI 7622-20111. 

SEM Analysis on MOCAF

SEM is a reliable method for testing and analyzing 
morphology of matrices at the micro/nanoscale. This 
method is an electron microscope that uses an electron 
beam reflected with high energy to describe the surface 
shape of the analyzed material (Julianti et al., 2011). 
The results of the observations made in this study are 
shown in Figure 4.

The results of SEM analysis of MOCAF samples 
showed that the largest starch granule sizes ranged 
from 15.3µm – 20.0µm, while the smallest varied 
between 3.77µm and 4.47µm. The morphology 
of MOCAF sample obtained the structure of large 
irregular round granules. In MOCAF samples A and 
B, the granules were irregularly rounded, and some 
parts had holes. Meanwhile, in the control samples C 
and D, the granules were irregularly round, the size 
was more non-uniform, and some parts were observed 
to have holes. Samples A and B presented in Figure 
4 appeared coarser and unified due to the process 
of MOCAF production using a modified fermentation 
process, where enzymes used degraded the cell wall 
cellulose. This phenomenon resulted in the liberation 
of starch granules, which led to the separation of 
starch granules.

Lopulalan et al. (2016) reported that the 
morphological structure of starch changed after 
modification. Based on the results, the morphology 
of ozone-modified starch had a rougher and more 
fibrous surface, showing breakage of starch crystals 
due to the high influence of water concentration 
absorbed. Additionally, the application of microwave 
heating affected changes in the morphological 
structure of MOCAF (Budiarti & Sulistiawati, 2019). 
The grain structure of MOCAF, rich in beta-carotene, 
appeared rounded, with some parts crumbling into 
flakes. The grinding and sifting processes resulted in 
irregular morphology, potentially causing damage to 
starch granules (Sefrienda et al., 2020). Zhang et al. 
(2018) reported that the morphological structure of 
starch granules would be damaged with increasing 
temperatures above 60 °C.

CONCLUSION

In conclusion, this study showed that drying 
methods significantly affected the physicochemical 
properties of MOCAF, causing differences in viscosity, 
solubility, and decreased syneresis. Based on the 
results, a decrease was observed in water, ash, protein, 
and fat content, followed by an increase in fiber, crude, 
and dry matter content. MOCAF microstructure with 
various drying methods resulted in the reformation 
of starch granules due to changes in morphology and 
structure, which were separated into irregular round 
and hollow shapes.
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