Free Fatty Acid Adsorption of Crude Palm Oil by Modified Fly Ash
Dyan Puji Lestari(1), Thamrin Usman(2*), Nelly Wahyuni(3)
(1) Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. H. Hadari Nawawi, Bansir Laut, Pontianak Tenggara, Kalimatan Barat 78124
(2) Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. H. Hadari Nawawi, Bansir Laut, Pontianak Tenggara, Kalimatan Barat 78124
(3) Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. H. Hadari Nawawi, Bansir Laut, Pontianak Tenggara, Kalimatan Barat 78124
(*) Corresponding Author
Abstract
This study used modified fly ash as a material to adsorb free fatty acid in Crude Palm Oil. One or two types of modification treatments in previous studies were used to investigate the effect on the absorption process. Therefore, this study focused on the capacity of the modified fly ash in adsorbing FFA with varying concentrations and durations of adsorption. Modification of fly ash began through leaching process using hydrochloric acid (HCl), followed by activation using hydrogen peroxide (H₂O₂), and reactivation using cocamidopropyl betaine (CAPB) surfactant. Scanning Electron Microscope Energy Dispersive X-Ray (SEM-EDX) is used to analyze the morphology and elements, while a Gas Sorption Analyzer (GSA) is used to analyze the pore radius, surface area, and pore volume of modified fly ash. Based on SEM-EDX result, fly ash had an amorphous shape with silicon (32.15%) and oxygen (50.29%) as the major elements. While GSA showed that the surface area, total pore volume, and average pore diameter were 15.34 m²/g, 0.02 cc/g, and 3.23 nm, respectively. Furthermore, modified fly ash had adsorption efficiency and capacity of 44.38%±0.21 and 140 mg/g±0.21, respectively. Then, adsorbent mass of 6% w/w and adsorption duration of 60 minutes recorded as the optimal condition of FFA adsorption process using fly ash. The maximum permissible FFA in cooking oil based on Standar Nasional Indonesia (2019) was 0.30%. Because of that, multi-stage adsorption was carried out to reduce the FFA in order to comply with Standar Nasional Indonesia (2019). The adsorption with twice repetition can produce CPO with FFA < 0.30% (initial FFA content of 1.2%). Due to the reduction level of FFA, the yield of the CPO obtained from each step was ±60-80%. This study could be applied in industry to reduce the FFA content and enhance the CPO quality.
Keywords
Full Text:
PDFReferences
Ahn, Y., & Kwak, S. Y. (2020). Functional Mesoporous Silica with Controlled Pore Size for Selective Adsorption of Free Fatty Acid and Chlorophyll. Microporous and Mesoporous Materials, 306(2020): 1-9. https://doi.org/10.1016/j.micromeso.2020.110410
Aigbe, U. O., Ukhurebor, K. E., Onyancha, R. B., Osibote, O. A., Darmokoesoemo, H., & Kusuma, H. S. (2021). Fly Ash-Based Adsorbent for Adsorption of Heavy Metals and Dyes from Aqueous Solution: A Review. Journal of Materials Research and Technology, 14(2021): 2751–2774). https://doi.org/10.1016/j.jmrt.2021.07.140
Anis, U., Millati, R., & Hidayat, C. (2022). Optimization of Crude Palm (Elaeis guineensis) Oil Bleaching using Zeolite-Fe by Response Surface Methodology. AgriTECH, 42(1): 23-29. https://doi.org/10.22146/agritech.48114.
Bariyah, K., Andarwulan, N., & Hariyadi, P. (2017). Pengurangan Kadar Digliserida dan Asam Lemak Bebas dalam Minyak Sawit Kasar Menggunakan Adsorben. Agritech, 37(1): 48-58. https://doi.org/10.22146/agritech.17009.
Bielaca, Z. Z., & Zagospodarowania, P.I.K. (2013). Spent Bleaching Earth – Obtaining and Directions of Utilization. Ecol Chem Eng. 20(6): 643-651. https://doi.org/10.2428/ecea.2013.20(06)059.
Buema, G., Lupu, N., Chiriac, H., Ciobanu, G., Bucur, R. D., Bucur, D., Favier, L., & Harja, M. (2021). Performance Assessment of Five Adsorbents Based on Fly Ash for Removal of Cadmium Ions. Journal of Molecular Liquids, 333(2021): 1-15. https://doi.org/10.1016/j.molliq.2021.115932.
Bonassa, G., Schneider, L. T., Alves, H. J., Meier, T. R. W., Frigo, E. P., & Teleken, J. G. (2016). Sugarcane bagasse ash for waste cooking oil treatment applications. Journal of Environmental Chemical Engineering, 4(4), 4091–4099. https://doi.org/10.1016/j.jece.2016.09.017.
Cao, S., Zhou, C., Pan, J., Liu, C., Tang, M., Ji, W., Hu, T., & Zhang, N. (2018). Study on Influence Factors of Leaching of Rare Earth Elements from Coal Fly Ash. Energy and Fuels, 32(7): 8000–8005. https://doi.org/10.1021/acs.energyfuels.8b01316.
Fungaro, D. A., Silva, K. C., & Mahmoud, A. E. D. (2021). Aluminium Tertiary Industry Waste and Ashes Samples for Development of Zeolitic Material Synthesis. Journal of Applied Materials and Technology, 2(2): 66–73. https://doi.org/10.31258/jamt.2.2.66-73.
Ghafar, A. H., Radwan, E. K., & El-Wakeel, S. T. (2020). Removal of Hazardous Contaminants from Water by Natural and Zwitterionic Surfactant-modified Clay. ACS Omega, 5(12): 6834–6845. https://doi.org/10.1021/acsomega.0c00166.
Herawati, D., Santoso, S. D., & Amalina, I. (2018). Kondisi Optimum Adsorpsi-Fluidisasi Zat Warna Limbah Tekstil Menggunakan Adsorben Jantung Pisang. Journal SainHealth, 2(1): 1-7. https://doi.org/10.51804/jsh.v2i1.169.1-7.
Meirinna, M., & Santosa, S. (2013). Sistem Penurunan Kadar Krom (III) Limbah Cair Industri Penyamakan Kulit dengan Kombinasi Presipitasi Menggunakan Natrium Hidroksida dan Adsorpsi Menggunakan Bagase Fly Ash. ASEAN Journal of System Engineering. 1(2): 62-69. http://journal.ugm.ac.id/index.php/ajse
Mobarak, M., Selim, A. Q., Mohamed, E. A., & Seliem, M. K. (2018). A Superior Adsorbent of CTAB/H2O2 Solution−Modified Organic Carbon Rich-Clay for Hexavalent Chromium and Methyl Orange Uptake from Solutions. Journal of Molecular Liquids, 259(: 384–397. https://doi.org/10.1016/j.molliq.2018.02.014.
Mushtaq, S., Aslam, Z., Ali, R., Aslam, U., Naseem, S., Ashraf, M., & Bello, M. M. (2022). Surfactant Modified Waste Ash for the Removal of Chloro and Nitro Group Substituted Benzene from Wastewater. Water Science and Technology, 86(8): 1969–1980. https://doi.org/10.2166/wst.2022.324.
Onwumelu, D. C., & Onwumelu, D. C. (2022). A Comparative Analysis of Activated Carbons from African Teak (Iroko) Wood and Coconut Shell in Palm Oil Bleaching. International Journal of Progressive Sciences and Technologies, 32(1): 383–396. https://www.researchgate.net/publication/361989970.
Priyanto, A., F, M., Muhdarina, M., & A, A. (2021). Adsorption and Characterization of Activated Sugarcane Bagasse Using Natrium Hydroxide. Indo. J Chem. Res., 8(3): 202–209. https://doi.org/10.30598//ijcr.2021.7-ade.
Rengga, W. D. P., Seubsai, A., Roddecha, S., Azizah, S. Y. N., & Rosada, D. F. (2021). Kinetic study of adsorption carboxylic acid of used cooking oil using mesoporous active carbon. IOP Conference Series: Earth and Environmental Science, 700(1). https://doi.org/10.1088/1755-1315/700/1/012035.
SNI 01-2901-2006. (2006). Minyak Kelapa Sawit Mentah, Badan Standarisasi Nasional, Jakarta.
SNI 7709-2019. (2019). Minyak Goreng Sawit, Badan Standarisasi Nasional, Jakarta
Sopianti, D. S., Herlina, H., & Saputra, H. T. (2017). Penetapan Kadar Asam Lemak Bebas pada Minyak Goreng. Jurnal Katalisator, 2(2): 100-105. https://doi.org/10.22216/jk.v2i2.2408.
Sunjidmaa, D., Batdemberel, G., & Takibai, S. (2019). A Study of Ferrospheres in the Coal Fly Ash. Journal of Applied Sciences, 9(1): 10–16. https://doi.org/10.4236/ojapps.2019.91002.
Susilowati, E., Hasan, A., & Syarif, A. (2019). Free Fatty Acid Reduction in a Waste Cooking Oil as a Raw Material for Biodiesel with Activated Coal Ash Adsorbent. Journal of Physics: Conference Series, 1167(1): 1-7. https://doi.org/10.1088/1742-6596/1167/1/012035.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Dyan Puji Lestari, Thamrin Usman, Nelly Wahyuni

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.







