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Abstract 
Solar energy prediction is one alternative to handling unpredicted conditions of weather and solar radiation 
intensity. It could be the most important factor in achieving stability in electricity generation using solar energy 
resources. In making predictions, the use of machine learning models has been carried out by various methods, 
and in this study, the method used for the algorithm model is gradient boosting. In the modeling process using 
gradient boosting, several hyperparameter settings are needed. Hyperparameters have an important role in 
producing stable predictive patterns and can avoid overfitting or underfitting conditions. In this study, the 
accuracy and speed of prediction of the machine learning model with the gradient boosting approach, namely 
XGBoost and LightGBM, were analyzed in relation to setting the hyperparameter learning rate and max depth 
of the model's prediction pattern. The dataset used spans 6 months at a data resolution rate of every 5 minutes 
and includes meteorological data at the location point of Energy Laboratory UKRIM Yogyakarta as well as the 
output value of PLTS power and temperature panels onsite. Setting the hyperparameter learning rate in the 
highest and lowest conditions generates accuracy values with a difference of 2% and about the same prediction 
speed. With nMAE values of 2.84% and 1.35% and nRMSE values of 6.11% and 3.68%, respectively, the higher 
learning rate results in lower error values for both models. The XGBoost model shown tendency for overfitting 
and slower prediction speeds with the highest max depth setting. The prediction speed is faster at the lowest 
max depth condition, but the XGBoost and LightGBM models both exhibit underfitting. 
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1. Introduction 

 The implementation of machine learning applications 
to proceed prediction systems of solar radiation into 
electrical energy generated from variables, most of which 
come from complex meteorological data, is one of the case 
studies conducted to improve reliability of the PV on-grid 
network. In order to make data predictions for the future, 
machine learning might examine the connections between 
various large datasets and identify patterns in the data 
collection (Lai et al., 2020). This study develops sensitivity 
analysis of the hyperparameter gradient boosting method 
for forecasting predictions of solar energy production 
during the annual period using the machine learning 
application.  
 Several studies that have been conducted include the 
prediction of global diesel radiation in Malaysia using a 
regression model (Ahmed Kutty et al., 2015); forecasting of 
PV energy production using the LightGBM model at the 
Faculty of Engineering, University of Ljubljana, Slovenia 
(Reba et al., 2019); forecasting solar energy From PLTS in 
South Korea, PV output data throughout the past is used 
with the Ensemble Learning Model which are Random 
Forest, Xgboost, and LightGBM (Choi & Hur, 2020). Further 
research using a different algorithm, namely the Naive 
Bayes Classifier and K-NN, on the PV Energy Prediction of 
the Faculty of Industrial Technology UII in Yogyakarta 
(Ikhsan, 2020). 
 Algorithm models in this study apply the gradient 
boosting techniques which are XGBoost and LightGBM. 
Predictions on a set of datasets are currently frequently 
made using both models. Zhou et al. (2022), who utilized 
different ensemble and gradient boosting models to 
predict solar energy sources in China, concluded that the 
XGBoost and LightGBM models obtained great results.  

They also noted that being able to manage to overfit and 
the rate of repetition became important considerations. 
Compared to conventional models like Random Forest, it 
has a better level of accuracy and is more successful at 
preventing overfitting  (Zhou et al., 2022). Therefore, it will 
concentrate more on the application of XGBoost and 
LightGBM models in this research. 
 Extreme-gradient boosting, the foundation of gradient 
boosting modeling, served as the concept for the model 
method known as XGBoost. The basic gradient boosting 
and regularization principles are applied in this algorithm 
model, which is intended to be used with machine learning 
algorithms for data that is organized into broad categories. 
Regression and data classification machine learning 
methods can be modeled using XGBoost (XGBoost 
developers, 2022). It is widely recognized that XGBoost can 
be used in machine learning applications. This is a result of 
its capability to adjust the algorithm's performance to 
various scenarios and adjustments in the number of data 
sets (Chen & Guestrin, 2016).  
 LightGBM, the algorithm model, which is an upgrade 
of the XGBoost model, has ability to process training data 
more quickly and with less memory usage while 
maintaining or even improving XGBoost's accuracy and 
error value (Microsoft Coorporation, 2022). The most 
recent iteration of the gradient boosting model for 
machine learning algorithms, known as LightGBM, 
emphasizes speed in the processing of datasets (Ke et al., 
2017). 

2. Methodology 

 In this research, analysis of the machine learning 
model LightGBM and XGBoost as gradient boosting method 
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is covered to predict the energy of the Rooftop Solar 
Generation Plant at Laboratory Energy in the University of 
Kristen Immanuel (UKRIM), Yogyakarta. 
 Meteorological data has a strong correlation with its 
effect on the solar radiation produced, so this will also 
provide a more accurate level of prediction to determine 
the solar energy produced (Widodo et al., 2021). The 
weather data used consists of relative humidity, air 
temperature, wind speed, cloud density level, water 
precipitation level, solar radiation, and surface air pressure. 
 

a. Variable data input 
 This study is modeled using meteorological time 
series data with an annual data range of January 2021–June 
2021 in 5-minute interval data resolution obtained from 
the Solcast database site at the coordinates of latitude -
7.775066 and longitude 110.45093. Then the sample data 
set is combined with the actual data of the PV system at 
the coordinates of the same location, namely the Energy 
Laboratory of UKRIM Yogyakarta. The dataset contains data 
rows totaling 52,128 database rows, which follow the 
distribution data shown in table 1. 
 

Table 1. Distribution data of the dataset 

Data 

Variable 

Air Temp Cloud 

Opacity 

Dewpoint 

Temp 
Dhi 

Count 52,128 52,128 52,128 52,128 

Mean 25.43 43.11 21.73 111.50 

Std 2.69 34.03 0.92 159.53 

Min 20.70 0.00 17.20 0.00 

25% 23.20 11.90 21.20 0.00 

50% 24.40 37.30 21.80 0.00 

75% 27.80 75.40 22.30 195.00 

Max 32.20 97.00 24.00 682.00 

 
 

Table 1 (continued). Distribution data of the dataset 

Data 

Variable 
Dni Ebh Ghi GtiFixedTilt 

Count 52,128 52,128 52,128 52,128 

Mean 137.87 103.11 214.61 216.90 

Std 248.26 199.87 305.44 308.63 

Min 0.00 0.00 0.00 0.00 

25% 0.00 0.00 0.00 0.00 

50% 0.00 0.00 0.00 0.00 

75% 166.00 85.25 427.00 431.00 

Max 924.00 887.00 1,042.00 1,042.00 

 
 

Table 1 (continued). Distribution data of the dataset 

Data 

Variable 

Precipitable 

Water 

Relative 

Humidity 

Surface 

Pressure 

Count 52,128 52,128 52,128 

Mean 137.87 103.11 214.61 

Std 248.26 199.87 305.44 

Min 0.00 0.00 0.00 

25% 0.00 0.00 0.00 

50% 0.00 0.00 0.00 

75% 166.00 85.25 427.00 

Max 924.00 887.00 1,042.00 

 
Table 1 (continued). Distribution data of the dataset 

Data 

Variable 

WindSpeed 

10m 
Pac Temp 

Count 52,128 52,128 52,128 

Mean 1.77 1,468.77 34.42 

Std 1.16 2,196.27 35.60 

Min 0.00 0.00 0.00 

25% 0.90 0.00 0.00 

50% 1.50 0.00 0.00 

75% 2.30 2,619.25 69.00 

Max 6.80 9,259.00 99.00 

 
 

b. Data pre-processing 
 Excel is utilized to prepare the dataset, and then it 
will be uploaded to a Jupyter notebook via the VS Code 
program for cleaning and feature selection. Cleaning 
missing data, selecting the proper data type for the 
following algorithm, and grouping data are the preliminary 
steps in the data processing process. This is the preparation 
stage for data (Martínez, 2018). 
 

c. Train and test split data 
 In this research, a model will be run using the 
training data ratio of 70:30. This is done to examine how 
the training data and testing data proportionally influence 
the processing time and score accuracy. 
 

d. Setting hyperparameter models 
 Hyperparameter settings are done by giving a range 
of values in advance for some of the hyperparameters 
used, namely learning rate, max depth, n_estimators, and 
feature fraction. The range of values for each 
hyperparameter will determine the best value of the 
hyperparameter that will be used by the two models. The 
best hyperparameter determination is carried out using the 
randomized searchCV method. This method is very efficient 
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in determining hyperparameters, from a given range of 
values, randomizedsearchCV will take a random pair of 
hyperparameters and perform modeling for each pair of 
hyperparameters (Li, 2020). Table 2 shows the best-
obtained hyperparameters with a given range of values. 
 
Table 2. Hyperparameter result using randomizedsearchCV 

Hyperparameter LightGBM 
model 

XGBoost 
model 

Range of 
value setting 

Max depth 11 10 1-12 

Learning rate 0.046 0.026 0.014-0.048 

N_estimator 440 500 20-580 

Feature fraction 0.7 - 0.1-0.9 

 
 The fraction hyperparameter feature is not used in 
the use of the XGBoost model in the package, so the 
default value is 1.0. Furthermore, hyperparameters are set 
in the model to make predictions using training data and 
data testing. 
 
 

e. Model prediction and analysis 
 The next step is to set the learning rate, max depth, n 
estimators, and feature fraction parameters in machine 
learning to the range of values that will produce the best 
results for each model after the dataset is ready to be used. 
For each LightGBM and XGBoost model, data evaluation 
was performed using a methodology based on accuracy 
level, predicting time speed, MAE, and RMSE values. 
 To evaluate the model, this research accommodates 
the method using: 

1. MAE, or mean absolute error, is another 
method for assessing forecasting 
approaches. Each error value or leftover 
amount is squared. Next, multiply the 
total by the number of observations. This 
method accommodates high predicting 
residuals (Barrera et al., 2020). 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦̂(𝑖) − 𝑦(𝑖)|

𝑁

𝑖=1

 

 
2. RMSE, or root mean squared error, which is 

based on the amount of data, is a 
measurement of the variance between 
the anticipated value and the actual 
value. When used on data with minimal 
outliers, this measurement will be more 
sensitive to big error values (Voyant et al., 
2017). 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦̂(𝑖) − 𝑦(𝑖))

2
𝑁

𝑖=1

 

 
 

3. Predicting time speed is measured while 
model start to fit training data and 
predict the testing data. The recorded 
time has been done by Jupyter notebook 
in the time unit. 
 

4. As for the level of accuracy of the two models 
using the method of determination 
coefficient R2, which measures the level 
of correlation between the independent 
variable and the dependent variable in 
the dataset (Kim et al., 2019). 

 

𝑅2 = 1 −
∑ (𝑦(𝑖) − 𝑦̂(𝑖))

2𝑁
𝑖=1

∑ (𝑦(𝑖) − 𝑦̅)2𝑁
𝑖=1

 

 
 Where, 𝑦(𝑖) is the actual value for i-th, 𝑦̂(𝑖) is the 
predicted value for i-th, 𝑦̅ is mean number for the actual 
value 𝑦(𝑖), and N is amount of total sample data in dataset 
(Kim et al., 2019). The process stages in the research using 
the XGBoost and LightGBM models for the machine 
learning algorithm are described in the flowchart in Figure 
1. 
 

 
 

Figure 1. Flow diagram of solar prediction model using 
machine learning gradient boosting 

 
 
 
3. Results & Discussion 

 The solar energy prediction modeling process has 
been carried out using a Jupyter Notebook with Python 
language, the dataset used has the following data analysis: 
 

a. Solar radiation potential 
 Solar radiation is only available periodically, which 
makes it difficult to employ as an energy source. The 
energy that can be produced is obviously less than that 
time span due to typical circumstances, in which solar 
radiation is only available for a period of 8–10 hours (IESR, 
2021). 
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 The distribution pattern of solar radiation for the 
UKRIM area can be seen in Figure 2 below. 
 

 
 

Figure 2. Pattern of solar radiation per daily time (GHI) 
 
 

 The level of solar radiation starts around 6 to 16 hours 
with peak conditions in the range of 10–12 hours during 
the day. This condition is in accordance with the energy 
pattern produced by rooftop solar power plants in the 
UKRIM laboratory. The amount of energy that is available 
in solar power plants is significantly impacted by changes in 
the weather and solar radiation intensity. Therefore, it 
requires a machine learning prediction system with a high 
level of stability.  
  
 

b. Model evaluation on best hyperparameter setting 
 
 The modeling outcomes are as follows, based on the 
simulation of data testing utilizing the best parameters 
found using the randomizedsearchCV approach. 
 

Table 3. Result of model evaluation using best 
hyperparameter 

Model LightGBM XGBoost 

Prediction time 
(sec) 

0.86 19.90 

Accuracy score, R2 
(%) 

94.60 97.19 

MAE (Watt) 237 149 

nMAE (%) 2.86 1.75 

RMSE (Watt) 510 368 

nRMSE (%) 6.15 4.31 

 
 The two algorithm models differ by about 2% in 
accuracy. The XGBoost model has a greater accuracy value 
than LightGBM, but this does not necessarily imply that 
XGBoost is superior to LightGBM. LightGBM is still taking 
into account the accuracy value of its performance, which 
is similarly above 90% with a lot faster speed. The XGBoost 

model also has a little lower error value than LightGBM in 
terms of the final error value. 
 

c. Effect of learning rate parameter on gradient 
boosting models 

 
 A phenomenon known as overfitting, when the 
resulting pattern does not generalize to the actual value, 
starts to occur at a high learning rate setting, which is 0.048 
in both models. 
 
 

 
Figure 3. Solar energy prediction using XGBoost model in 

higher learning rate 
 

 
Figure 4. Solar energy prediction using LightGBM model in 

higher learning rate 
 
 

 
Figure 5. Comparation between XGBoost and LightGBM 

using higher learning rate 
 
 
 From Figure 5, it can be seen that the XGBoost model 
tends to follow actual values more closely than the 
LightGBM model. It is indicated that XGBoost has the 
potential to get overfitting predictions. Both models 
produce accuracy and error values under similar settings 
when the parameters for the learning rate are set at higher 
and lower conditions, as indicated in the table as follows. 
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Table 4. Hyperparameter with higher learning rate 

 Result on learning rate 
0.048 

Model LightGBM XGBoost 

Prediction time 
(sec) 

1.16 18.0 

Accuracy score, R2 
(%) 

94.65 97.73 

MAE (Watt) 236 121 

nMAE (%) 2.84 1.35 

RMSE (Watt) 507 330 

nRMSE (%) 6.11 3.68 

       
 In Table 4, both models have a very high level of 
accuracy, above 90%, with the learning rate set at a 
position of 0.048. The nMAE and nRMSE error values of the 
XGBoost model are lower, with values of 1.35% and 3.68%, 
respectively, while the LightGBM model has an error value 
of 2.84% and 6.11%. Nevertheless, the comparison of the 
two models in their prediction patterns gives a different 
opinion. The LightGBM model still produces a better 
generalization pattern than the XGBoost model. 
 Furthermore, the two gradient boosting models 
were adjusted to the learning rate at a low condition, 
which is 0.014. The results of these settings provide a 
predictive pattern that is not too much different from a 
high learning rate condition. 
 

 
Figure 6. Solar energy prediction using XGBoost model in 

lower learning rate 
 
 

 
Figure 7. Solar energy prediction using LightGBM model in 

lower learning rate 
 
 

 
Figure 8. Comparation between XGBoost and LightGBM 

using lower learning rate 
 
 According to the given graph, using a low learning 
rate of 0.014 results in a different pattern between 
LightGBM and XGBoost when compared to the actual 
pattern. While the XGBoost model still suffers from an 
overfitting situation that forces the model to produce a 
pattern that is closer to the actual value, LightGBM can 
nevertheless identify patterns that are generalized. 
 In Tables 4 and 5, the prediction speeds of the two 
models for both high and low learning rate settings 
produce values that are close to the same. It can be seen 
that the change in the learning rate does not really affect 
the speed of the prediction of the machine learning model. 
However, both models require prediction speed with 
values of 1.19 seconds and 19.9 seconds while using low 
learning rate conditions. 
 Meanwhile, the R2 accuracy value in both XGBoost 
and LightGBM models experienced a slight decrease at low 
learning rate settings, with values of 93.02% and 96.6%, 
respectively. This is because the use of a low learning rate 
causes machine learning models to reduce their complexity 
for each iteration in a decision tree. Nevertheless, it can 
reduce the tendency for model overfitting to occur. The 
nMAE and nRMSE values for both models also experienced 
less significant up. For the XGBoost model, the results 
obtained were 2.08% and 4.90%, while for the LightGBM 
model they were 3.65% and 7.73%, respectively. 
 

Table 5. Hyperparameter with lower learning rate 

 Result on learning rate 
0.014 

Model LightGBM XGBoost 

Prediction time 
(sec) 

1.19 19.9 

Accuracy score, R2 
(%) 

93.02 96.6 

MAE (Watt) 274 171 

nMAE (%) 3.65 2.08 

RMSE (Watt) 580 404 

nRMSE (%) 7.73 4.90 
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d. Effect of max depth parameter on gradient 
boosting models 

 
 The analysis is performed in this part using high and 
low maximum depth settings. Max depth is one of the 
settings that control how many decision trees the model 
creates. Therefore, overfitting circumstances can be 
managed by max depth settings, and the max depth option 
can affect how quickly the model makes predictions on 
each decision tree employed (XGBoost developers, 2022). 
The following figures show the outcomes of various 
maximum depth settings. 
 

 
Figure 9. Solar energy prediction using XGBoost model in 

higher max depth 
 
 

 
Figure 10. Solar energy prediction using LightGBM model in 

higher max depth 
 
 

 
Figure 11. Comparation between XGBoost and LightGBM 

using higher max depth 
 
 At a high max depth setting, a predictive pattern is 
produced which is increasingly susceptible to overfitting. By 
increasing the max depth, the number of leaves in decision 
trees is increased. It would affect to both models to 
produce a predictive value that is getting closer to each 
point of the actual value. In figures 9 and 11, it can be seen 
that the XGBoost model has a more severe level of 
overfitting than the LightGBM model. 

 Furthermore, both models were analyzed using a 
lower max depth setting, to see the level of stability 
between the two models against a lower level of tree 
creation. 
 

 
Figure 12. Solar energy prediction using XGBoost model in 

lower max depth 
 
 

 
Figure 13. Solar energy prediction using LightGBM model in 

lower max depth 
 
 

Figure 14. Comparation between XGBoost and LightGBM 
using lower max depth 

 
 A drastically different pattern is observed at a low 
max depth of 1, which results in a pattern that is 
underfitting. This condition exists in both models. The 
newly created prediction pattern begins to resemble a 
straight line. Then, by setting various parameters on max 
depth for the highest and lowest values, both models were 
put to the test. Based on the above conditions, it shows 
that the max depth has a significant influence in terms of 
model complexity. This is especially true for the XGBoost 
model, which uses the concept of a level-wise decision 
tree. The results are shown in the Table 6. 
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Table 6. Hyperparameter with higher max depth 

 Result on max depth 12 

Model LightGBM XGBoost 

Prediction time (sec) 1.04 23.7 

Accuracy score, R2 (%) 94.62 97.75 

MAE (Watt) 237 113 

nMAE (%) 2.92 1.29 

RMSE (Watt) 509 329 

nRMSE (%) 6.28 3.77 

     
 The results of the high max depth setting are shown in 
Table 6, for the speed and accuracy values are still 
relatively the same when setting a high learning rate. While 
in Table 7 with a lower max depth setting, the results are 
much different. At the level of prediction speed, both 
models produce much faster predictions.  
 Significant changes occurred in the XGBoost model 
with a prediction speed of 2.92 seconds, and the speed is 
increased by about 10 times. Meanwhile, the accuracy 
value on XGBoost has decreased quite drastically to a level 
below 90%, with an increase in the error value of more 
than 2 times. Different conditions can be seen in the 
LightGBM model which is classified as experiencing a more 
stable change, for the accuracy value is still above 90% with 
the error value slightly increasing below 2 times. 
 

Table 7. Hyperparameter with lower max depth 

 Result on max depth 1 

Model LightGBM XGBoost 

Prediction time 
(sec) 

0.58 2.92 

Accuracy score, R2 
(%) 

90.07 89.91 

MAE (Watt) 366 368 

nMAE (%) 4.82 5.02 

RMSE (Watt) 691 697 

nRMSE (%) 9.10 9.50 

       
 
 As observed from the data above, both models' 
accuracy and error values decreased when the max depth 
parameter was reduced. The prediction speed in both 
models has slowed down while the accuracy and error 
values have increased at high max depth. In terms of 
accuracy stability, the LightGBM model outperforms the 
XGBoost model at the testing stage of the learning rate and 
max depth parameters. 
 
 
4. Conclusion 

1. From different learning rates and hyperparameter 
settings, the LightGBM model can generate stable 
data prediction patterns and can overcome the 
tendency for overfitting conditions. 
 

2. Meanwhile, in the XGBoost model to test the 
sensitivity of learning rate changes, the model is 
increasingly experiencing overfitting conditions 
when using a high learning rate. 

 
3. Changes to the max depth hyperparameter have a 

significant effect on the XGBoost and LightGBM 
models. When the max depth is too low, the 
resulting pattern is close to underfitting. However, 
the LightGBM model still has a better level of 
stability than the XGBoost model, which is seen at 
an accuracy rate that is still above 90%. 

 
4. The usage of max depth and a higher learning rate 

will affect the prediction speed level, with slower 
results. While the value of the accuracy level and 
the resulting error value will increase, there can be 
a risk of overfitting the model. 
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