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ABSTRACT
Candida sp are the most common fungal pathogens causing fatal health care associated infections.
Among the genus of Candida, Candida albicans is the most frequent species isolated from
patients. The notorious C. albicans infection is the ability of this dimorphic fungus to form
biofilm. Biofilm has been pointed as a dynamic phenotypic switching in bacteria and fungi,
which may result in higher morbidity and mortality in human beings. This review addresses the
basic explanation of biofilm formation which is characterized by the antifungal agents resistance.
The factors that influence C. albicans biofim formation and antifungal agents resistance are
discussed.

ABSTRAK
Candida sp merupakan jamur patogen yang paling sering menyebabkan infeksi yang fatal di
rumah sakit. Diantara genus Candida, Candida albicans merupakan spesies paling sering yang
dijumpai pada pasien. C. albicans adalah jamur dimorfik yang dapat membentuk biofilm. Biofilm
adalah suatu rangkaian perubahan fenotipik pada bakteri maupun jamur, yang dapat menimbulkan
peningkatan morbiditas dan mortalitas pada manusia. Review ini membahas tentang pembentukan
biofilm yang disertai dengan adanya resistensi terhadap obat antijamur. Hal-hal yang berpengaruh
terhadap pembentukan biofilm dan sifat resistensi terhadap antijamur yang menyertainya dibahas
di dalam review ini.
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INTRODUCTION

Candida sp are documented as a causative
agent of plenty fungal infection in human beings.
Candida sp are the most common fungal
pathogens causing fatal health care associated
infections, especially in patients admitted to
intensive care units and the fourth most frequent
pathogen isolated and accounted for 9% of
blood stream infection.1 Colonization and
biofilm formation of Candida sp has been
reported in the biomaterials, such as: shunts,

stents, prostheses, implants, catheters, and other
indwelling medical devices.2,3 The Candida sp
isolated from patients suffering from
nosocomial blood stream infection in the
Surveillance and Control of Pathogens of
Epidemiological Importance (SCOPE) study in
the United States were Candida albicans
(54%), followed by C. glabrata (19%), C.
parapsilosis (11%), and C. tropicalis (11%)
respectively.4 Candida albicans has been
reported as a common causative agent for
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nosocomial infection transmitted among patients
in burn units,5 and was documented as the most
common cause of recurrent and non-recurrent
vulvovaginitis.6

Candida albicans is a yeast form fungi
which is well known as a classic example of
opportunistic fungi which may be responsible
for various superficial and systemic infection
in human beings. Candida albicans is frequently
found as the normal microbiota of humans and
does not regularly cause disease in immuno-
competent hosts. It exists as commensal in the
skin and mucosal surfaces, as well as genital
and gastrointestinal tracts. However, in
immunocompomised patients it may be
responsible for mild to severe clinical manifes-
tation.7

Candida albicans becomes pathogen if the
host’s immune response is impaired. The
impaired local or systemic immune response
may contribute to the alteration of commensal-
pathogen characteristic of C. albicans. Neutro-
penia, neutrophil dysfunction, disruption of
mucosal barriers, patients receiving chemo-
therapy for neoplasm, and immuno-suppressants
after organ transplantation or patients with HIV/
AIDS are the risk factors for disseminated
opportunistic fungal infections. 8 In an
immunocompromised host, translocation from
the gastrointestinal tract and intravascular
catheters are the two main sites of entry for
disseminated candida infection.7 In HIV/AIDS
patients, C. albicans was observed as the
leading fungi that causes opportunistic
infection.9

Candida albicans is unicellular, reproduc-
ed by budding, and grows well in routine
automated blood culture bottles and on agar
plates. Candida albicans is dimorphic fungi that
is characterized by its ability to grow alternately
as yeast and filamentous forms fungi. In specific
conditions it can be found in where all the cells

grow as yeast and in other conditions it can be
found in where most cells grow as hyphae or
filamentous form.10 The morphological change
of C. albicans is rapid and in response to the
external signals. These dynamic changes are
associated with the pathogenecity and virulence
of the microorganism.11

Other than dimorphic (yeast-hyphae)
biological property, C. albicans has
morphological characteristics which may occur
naturally in its life cycle. These distinct
morphologies include the pseudohyphal form,
opaque form and chlamydospore. Pseudohyphae
is related with its budding reproduction
property. It is often found with yeast and hyphal
forms in vegetative culture and during
infection.11 It is well known that C. albicans
may produce pseudohyphae and true hyphae at
the same time (FIGURE 1). The opaque form is
associated with mating-competent cells. The
white-opaque transition is associated to the
sexual mating process in C. albicans.12

FIGURE 1. Microscopic appearance of Gram
staining of sputum obtained from HIV/
AIDS patient that showed colonization
of C. albicans. The budding yeast, true
hyphae and pseudohyphae were observed.

This review is addressing biofilm format-
on of C. albicans and its implication to the
antifungal resistant and factors that may be
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useful to modify the deleterious impact of
antifungal resistant.

DISCUSSION

Biofilm formation of C. albicans
Biofilm can be defined as a community of

microorganisms that are irreversibly attached
to a surface, containing exopolymeric matrix and
exhibiting distinctive phenotypic properties.13

The most important distinctive phenotypic
property of biofilm forming microorganism is
the antimicrobial resistance. This might result
to a critical situation in patient setting, as in
some circumstances it means the necessity of
removing the prosthesis, implant or other
medical device. The increases of morbidity and
mortality as well as medical expenses are the
inevitable consequences.

Candida albicans is not the only species
included in the Candida genus which is able to
develop biofilm. Indeed, C. albicans biofilm
is the most studied biofilm formed by yeasts.
Three stages of C. albicans biofilm formation

are hypothesized as: the adherence of yeast cells
to the surface (initial phase), formation of an
extracellular matrix with dimorphic switching
from yeast to hyphal forms (intermediate phase),
and increase in the extracellular matrix material
recruitment to form three dimensional structure
of biofilm (maturation phase) (FIGURE 2).3,14

It begins with adherence of yeast cells to a
foreign substrate (host tissue or medical device)
(A), followed by proliferation of the yeast cells
across the substrate surface with hyphal
development which may include the
pseudohyphae and true hyphae (B). The final
step of biofilm development is the maturation
phase with recruitment of massive exctra-
cellular matrix (brown) from the environmental
substrate that may produced by the host or the
microorganisms that contribute to the biofilm
development (C). After entering maturation
phase, a few planktonic cells may be released
from the mature biofilm and transferred to the
new surface to start the new biofilm formation
cycle.

FIGURE 2. Cartoon of step-wise process of C. albicans biofilm development

In every step of biofilm formation, there
are dynamic gene expressions that may facilitate
the biofilm formation. Some genes are
specifically expressed in planctonics, initial
phase, intermediate phase or maturation phase.15

There are plenty genes that have been identified
involved in cell adhession (42 genes), biofilm
formation (122 genes), filementous growth (512

genes), and phenotypic switching (44 genes)
respectively.16 Very recently, Nobile et al17

described a master circuit of six transcription
regulators, sequence-specific DNA-binding
proteins that regulate transcription, which
controls biofilm formation by C. albicans.
Exploring the regulation of genes expression in
the biofilm formation phases is important to
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understand the characteristic of candidal
biofilm. It is even more important to find the
molecular target to inhibit the biofilm formation.

The initial phase is started when C.
albicans cells attached to the surface of living
or unanimated material such as, mucosal layer,
dental surface, or indwelling medical devices.
It is important to consider that cells-surface
adherence of the yeast is the key point of biofilm
development. It needs to anchor the structure
on the surface. On the other hand, the adherence
among yeast cells itself has been also
highlighted as key point of initial phase of
biofilm formation properties.13,18 The adherence
of yeast cells to the surface were regulated by
the environmental milieu. For example in oral
cavity, the adherence was influenced by the
dietary and salivary factors. The presence of
two monosaccharides, glucose and galactose,
has been extensively investigated for their
effects on candidal adhesion.19 This finding was
in agreement with another report which
compared the biofilm formation in vitro by using
two difference media, RPMI and synthetic urine.
The level of hyphal formation of yeast cells
biofilms formed in synthetic urine medium was
diminished compared to those grown in RPMI
medium.20

The nature of medical devices surface is
important to build a candida biofilm. The
property of medical devices surface, contact
angle of materials, and the index of
hydrophobicity were found to be correlated
positively with initial adhesion and biofilm
formation of C. albicans.21,22 Modification of
medical devices surface has been showed as
candidate approach to inhibit candida biofilm
formation.23 The surface support for biofilm
formation is depending on the nature of
biomaterial. It was showed in the C. albicans
biofilm formation model that latex and silicone
elastomer increased the biofilm formation but
not the polyurethane or pure silicone.24,25

Nonetheless, there was a negative correlation

between mucin absorption with removability of
candida biofilm.21,22

Intermediate phase was characterized by
formation of an extracellular matrix with
dimorphic switching from yeast to hyphal forms.
However, switching of the yeast to hyphal form
was not obligated for C. albicans biofilm. Two
mutants of C. albicans derived from one
parental strain were characterized as incapable
to form hyphae or yeast. Experimental
procedures using these two mutants showed that
it still showed the ability to form biofilm.26 It
was observed that the characteristic of the
biofilms of the two mutants was different. The
hypha-negative mutant produced only the basal
layer, and the yeast-negative mutant produced
only the outer layer, which was more easily
detached from the catheter disks. This suggests
that dimorphism might be necessary for biofilm
architecture and structure.3 This result is in
agreement with the report that found farnesol, a
quorum-sensing molecule, inhibit filamentation
in C. albicans, also inhibits its biofilm
formation.2,27 However, it should be noted that
biofilm somehow absolutely does not depend
to the morphological properties of the fungi.
Either yeasts or hyphal morphology may
contribute to the potential effect of biofilm
formation.

Important to the maturation of candidal
biofilm is recruitment and deposition of
extracellular matrix. This complex extracellular
material might function to defend against
phagocytic cells of host immune response, to
serve as a scaffold to maintain biofilm structure
integrity, and to safe guard the biofilm from
environmental exposure.18Environmental factor
that may be important to the candida biofilm is
the bacterial and fungal populations that may
interact with C. albicans to modulate the nature
of the biofilm extracellular matrix. The viability
of candida biofilms was significantly decreased
by the presence of Pseudomonas aeruginosa
and Escherichia coli. Further, it was reported
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that Streptococcus mutans increased C.
albicans biofilm formation, and that C. albicans
displayed synergism with C. glabrata when they
developed biofilm. 28,29 The relationship
between bacteria or other fungi with candidal
biofilm is complex and not completely
elucidated yet. It depends on the bacterial
species and its numbers, and may affect the
morphogenesis of the yeast.29

The innate immune system has been
identified as the principle protection against
candidiasis. Polymorphonuclear leukocytes
(PMNs) are the primary components of the innate
immune response against Candida infections.30

Macrophages and neutrophiles are the cells that
are most commonly associated with the innate
immune response against C. albicans infection.
Macrophages produce a variety of soluble
factors, including cytokines and chemokines, in
response to specific microorganism, including
C. albicans.31 Little is known about the ways in
which macrophages and neutrophils recognize
C. albicans as a pathogenic microorganism, or
how the fungal–leukocyte interaction triggers an
inflammatory response.8

It was reported that viable peripheral blood
mononuclear cells (PBMC) did not phagocytes
the fungal cells in the biofilm form. This
phenomenon is in contrast with the finding that
PBMCs phagocytes the planctonic C. albicans.
Indeed, the host innate immune response
influences the biofilm formation of C. albicans.
The biofilm formation enhancing effect of
PBMCs is mediated by soluble factors, which
consist of pro- and anti- inflammatory cytokines,
and released into the co-culture medium of
PBMCs with C. albicans.31

Antifungal agents resistance
As opportunistic fungi, C. albicans might

be found either as commensals or pathogens.
The factors that facilitate its switching are
considered as virulence factors. Several
virulence factors were suggested, such as genes

and proteins that regulate adhesion, hyphal
formation, proteinase protein, phenotypic
switching and biofilm formation.16 There is a
positive association between the levels of
virulence of C. albicans with the ability to form
biofilm.24

In clinical setting, biofilm forming C.
albicans has a significant difference characte-
ristic compared to non biofilm forming. This
condition is believed as the result of distinct
diseases pathogenesis. The most discussed
characteristic is its resistance to antifungal
treatment. It has been reported that 50%
inhibition of [3H]leucine incorporation (IL50)
and 50% inhibition of MTT-formazan formation
(IF50) for biofilms were 5 to 8 times higher than
the observed values for planktonic cells and 30
to 2,000 times higher than the relevant minimum
inhibitory concentrations (MIC) for five
antifungals studied, i.e: amphotericin B,
fluconazole, flucytosine, intraconazole, and
ketoconazole.Among antifungal drugs tested in
this study, fluconazole is the most effective for
C. albicans biofilm.32 C. albicans biofilm was
documented as highly resistant to antifungal
agents: fluconazole, nystatin, amphotericin B,
voriconazole, ravuconazole, terbenafine, and
chlorhexidine in other reports. 14,33 The
resistance of C. albicans to antifungal agents,
as reflected by its MIC was reported to increase
during the development of biofilm in progress.
The drug resistance develops over time, and
corresponds to the development of biofilm itself,
which was associated with the increase of
metabolic activity of developing biofilm.14

The mechanism of antifungal agents
resistance in C. albicans biofilm is not well
known yet. However, there are several reports
that serve data for hypothetical mechanism of
antifungal agents resistance in C. albicans
biofilm: (1) biofilm slow growth; (2) decrease
of the concentration of antifungal agents in the
depth of biofilm because of penetration barrier;
and (3) expression of resistant regulator genes
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that associated with surface contact.25 One
possible resistance mechanism is related to the
slow growth rate of C. albicans biofilm cells
as a result of the limited availability of
nutrients.25 Slow growth is the main difference
of the characteristic of biofilm forming yeast
cells compared to the planktonic cells.
However, the resistance to amphotericin B of
C. albicans biofilm was not dependent to growth
rate. It was in contrast with the susceptibility
of planktonic cells to the drug that was highly
dependent on growth rate. In the very low
growth rate, planktonic cells were resistant to
amphotericin B, but they became susceptible
when the growth rate increased.26 This data
suggested that drug resistance to antifungal drugs
is not simply resulted from slow growth of C.
albicans biofilm.

It was hypothesized that the biofilm’s three
dimensional structures can physically prevent
the entrance of antifungal agents inside the depth
of biofilm, that eventually diminishes the
susceptibility of biofilm against antifungal
agents. Physical barrier of biofilm is mainly
the consequence of deposition of extracellular
matrix among the microorganisms cellular body
which contributes to the biofilm formation. C.
albicans biofilms which were grown in static
condition and gentle shaking were compared

regarding to their susceptibility to antifungal
agents. Static condition is mimicking the
condition with limited extracellular matrix and
shaking condition is similar with condition that
induces more extracellular matrix. By using this
experiment, Baillie and Douglas34 showed that
the biofilm susceptibility against antifungal
agents between the two growing conditions was
not significantly different. It was suggested that
the extracellular matrix did not associate with
the resistance of biofilm to the antifungal agents.
It was also documented that the surface on which
the biofilm was developed did not affect the
drug susceptibility profile. However, the role
of cell density in the phenotypic resistance of
biofilm is in debate. There was contribution of
cell density to the phenotypic resistant.35,36

However, recently it was reported that the
higher number of cells does not explain the
higher resistance of biofilm against biocides.37

Biofilm formation results to the phenotypic
change of C. albicans, which is believed to be
associated with the dynamic of genes
expression. Particular interest is highlighted to
the genes which regulate the antifungal resistant
phenotypes (TABLE 1). Understanding the
genes regulation may open a new insight to the
mechanisms of antifungal agents resistance
associated with biofilm formation.

TABLE 1. Genes contribute to the C. albicans biofilm antifungal agents resistance
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CONCLUSION

Candida albicans is the most frequent
fungal biofilm forming yeast in the clinic. Fungal
biofilm has been studied for a long time by many
workers; nevertheless many questions still need
to be addressed. Fungal biofilm is an inducible
phenotype that may result to the antifungal agents
resistance. The actual environmental and
genetics make up of the yeast that plays pivotal
role in this inducement is not clearly elucidated
yet. Antifungal agent resistance is the most
important topic, since the implication of fungal
biofilm in the clinics is obvious. Molecular
mechanism of antifungal resistant in biofilm is
a complex pathway. We need more additional
data that provide insight to find the molecular
targets of drugs that may inhibit the development
of biofilm in the clinical setting.
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