Efek Amodiaquine Terhadap Infeksi *Brugia pahangi* pada *Aedes togoi*¹⁾

Oleh: Sugeng Juwono Mardibusodo

Bagian Parasitologi Fakultas Kedokteran Universitas Gadjah Mada, Yogyakarta

ABSTRACT

Sugeng Juwono Mardihusodo - Effects of amodiaquine on Brugia pahangi infection in Aedes togoi

A primary screening of amodiaquine as a filaricide using Brugia pahangi — Aedes togoi model infection was carried out. The drug dissolved in 10% sucrose—water solution in the concentrations of 100 mg%, 200 mg% and 400 mg% fed ad libitum to the uninfected and infected mosquitoes for 4, 8 and 12 days showed definite insecticidal and filaricidal activities.

Key words: primary filaricide screening — amodiaquine — Brugia pahangi—Aedes togoi model infection — filariasis — parasitology

PENGANTAR

Amodiaquine atau 7-chloro-4-(3-diaethylaminomethyl-4-hydroxyaniline) quinoline sudah lama dikenal sebagai obat anti-malaria yang efektif. Bahkan kemudian senyawa tersebut telah dimasukkan dalam daftar obat-obat filarisida baru oleh Komite Ahli Filariasis WHO (1974) yang diharapkan sebagai calon pengganti diethylcarbamazine (DEC) untuk kemoterapi filariasis pada manusia. Hal ini didasarkan atas hasil penelitian beberapa ahli seperti Thomson et al. (1968), Elslager et al. (1969), dan Lamler et al. (1971) yang menunjukkan, bahwa senyawa kimia itu bersifat makrofilarisidal terhadap Litomosoides carinii pada tikus Mongolia, Meriones unguiculatus, dan tikus kapas, Sigmodon hispidus. Kesan yang sama juga didapat oleh McMahon (1979) yang telah melakukan uji coba klinik obat itu pada penderita yang positif dengan infeksi Wuchereria bancrofti, bila dosis total obat yang diberikan mencapai 40 mg per kg berat badan.

Belum diketahui secara terperinci apakah amodiaquine berkhasiat juga terhadap bentuk perkembangan cacing filaria dalam tubuh nyamuk, karena itu diteliti apa dan bagaimana efek obat tersebut dengan menggunakan Brugia pahangi — Aedes togoi sebagai infeksi model yang dikerjakan di Mahidol University Faculty of Tropical Medicine, Bangkok.

Disajikan dalam Kongres Nasional Perhimpunan Pemberantasan Penyakit Parasit Indonesia (P4I) II dan Seminar Nasional Parasitologi III di Bandung, tanggal 28-30 Agustus 1983.

BAHAN DAN CARA KERJA

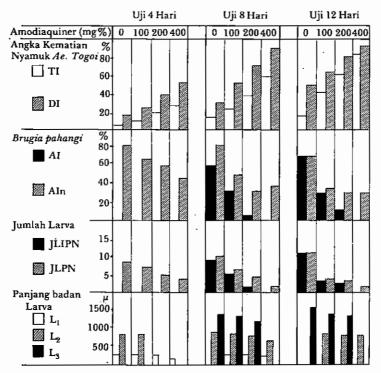
Nyamuk yang dipakai sebagai vektor laboratorium adalah Aedes togoi yang sangat mudah dikenai infeksi Brugia dan cacing filaria lain (Ramachandran, 1963). Koloni nyamuk dipertahankan menurut cara yang dianjurkan oleh Gerberg (1970) dalam insektarium dengan temperatur 25 ± 3 °C dan kelembaban udara 85 ± 5 %.

Sebagai sumber infeksi *B. pahangi* untuk *Ae. togoi* adalah seekor kucing yang diinfeksi secara percobaan dengan tingkat kepadatan mikrofilaria 8,7-14,3 atau rata-rata $12,2\pm0,6$ ekor per mm³ darah tepi.

Obat yang diuji coba adalah amodiaquine (Camoquine®, Parke Davis) yang dicampur dengan larutan sukrosa 10% dalam berbagai konsentrasi: 0 mg%, 100 mg%, 200 mg% dan 400 mg%, yang masing-masing dimaksudkan sebagai pembanding (kontrol), larutan obat dosis rendah, sedang dan tinggi.

Caranya: nyamuk umur 4—7 hari yang telah dibiarkan menggigit dan kenyang darah kucing tanpa atau dengan infeksi B. pahangi dibagi dalam beberapa paper cups, masing-masing diisi 50 ekor, dan dikelompokkan dengan perlakuan yang berbeda. Obat dicampurkan dalam air sukrosa 10% dan diberikan secara langsung ad libitum dengan membiarkan nyamuk menghisapnya dari segumpal kapas yang dicelupkan dalam larutan obat itu dan diganti setiap hari dengan yang baru, demikian selanjutnya sampai percobaan diakhiri pada hari keempat, delapan dan dua belas.

Dalam jangka waktu itu jumlah nyamuk yang mati dicatat dan dijumlah-kan sebagai Angka Kematian (AK) nyamuk yang diteliti. Setelah 4, 8 dan 12 hari, nyamuk yang masih hidup dibedah, dicatat jumlah yang positif dengan larvae, dan larvae yang infektif B. pahangi berturut-turut sebagai Angka Infeksi (AI) dan Angka Intektif (AIn), jumlah stadium larvae (L₁, L₂ dan L₃) masing-masing dalam bagian tubuh nyamuk: caput, thorax dan abdomen. Diukur pan-jang dan diameter (lebar) sejumlah bentuk larvae dengan bantuan camera lucida.


Tiap-tiap percobaan dilakukan dua kali, dan hasilnya dibuat rata-rata.

HASIL

Uji coba empat hari

Dari pengamatan efek amodiaquine terhadap Ae. togoi tanpa infeksi diketahui bahwa Angka Kematian (AK) nyamuk yang menghisap larutan obat bertambah secara bermakna (P<0,005). Yang tak mendapat obat AK 4%, sedang yang dipelihara dengan larutan obat dosis 100, 200 dan 400 mg% jumlah yang mati berturut-turut 10%, 17% dan 25% (TABEL 1 dan GAMBAR 1).

Adanya infeksi dengan B. pahangi pada Ae. togoi nampak mengakibatkan bertambahnya AK nyamuk, misalnya: 16% dibandingkan dengan hanya 4% pada nyamuk yang tak diinfeksi (P<0,05). Pemeliharaan nyamuk yang diinfeksi dengan larutan amodiaquine 100, 200 dan 400 mg% berakibat meningkatnya AK nyamuk secara bermakna berturut-turut sampai 24%, 38% dan 52% (P<0,05) (TABEL 1 dan GAMBAR 1).

GAMBAR 1. — Efek amodiaquine terhadap infeksi Brugia pahangi pada Aedes togoi.

Tanpa infeksi (TI); Dengan infeksi (DI); Angka Infeksi (AI); Angka Infeksi (AIn);

Jumlah Larva Infeksif Per Nyamuk (JLIPN); Jumlah Larva Per Nyamuk (JLPN);

Stadium Larva ke-1 (L₁), ke-2 (L₂), dan ke-3 (L₃).

TABEL 1. — Efek berbagai dosis amodiaquine pada Angka Kematian (AK) Ae. togoi yang tanpa dan dengan infeksi B. pahangi dipelihara dalam insektarium selama 4 hari setelah diberi makan darah kucing. Diamati pada 2 percobaan (P₁ & P₂) masing-masing 100 ekor nyamuk.

Normanik Andreas				Dosis Ol	oat (mg%)	
Nyamuk Aedes togoi			0	100	200	400
Tanpa infeksi						
Jumlah nyamuk mati		\mathbf{P}_{1}	3 `	8	16	26
-		P ₂ x	5	11	18	24
		x	4,0	10,0	17,0	25,0
	AK1)	(%)	4,0	10,0	17,0	25,0
Dengan infeksi						
Jumlah nyamuk mati		$\mathbf{P}_{\mathbf{l}}$	15	24	39	50
,			17	24	37	54
		P ₂ x	16	24	38	52
	AK ²	(%)	16,0	24,0	38,0	52,0
	χ2		8,000	6,945	11,059	15,394
	P		< 0,005	< 0,01	< 0,005	< 0,005

AK¹): $\chi^2 = 20,432$; db = 3; P<0,005 AK²): $\chi^2 = 34,416$; db = 3; P<0,005

Amodiaquine menunjukkan efek merusak terhadap perkembangan larva B. pahangi dalam Ae. togoi (TABEL 2 dan GAMBAR 1). Ternyata bahwa dalam kelompok nyamuk yang diberi obat perkembangan larva stadium 1 (L₁) ke stadium 3 (L3) sangat terhambat, terutama yang diberi dosis obat 200 dan 400 mg%. Angka Infeksi (AI) menurun secara bermakna pada kelompok yang diobati (P<0,05). Pada nyamuk yang dipelihara dengan larutan amodiaquine 100, 200 dan 400 mg% AI berturut-turut 65,8%, 59,7% dan 45,8%, sedangkan pada pembanding 83,3%.

TABEL 2. - Efek berbagai dosis amodiaquine pada perkembangan larvae B. pahangi dalam Ae. togoi yang dipelihara 4 hari setelah menghisap darah kucing. Diamati pada 2 percobaan (P1 & P9)

Normal deductions			Dosis Ob	at (mg%)	
Nyamuk Aedes togoi		0	100	200	400
Jumlah nyamuk bedah	P_1	85	76	61	50
	P ₂	83	76	. 63	46
	<u> </u>	84	76	62	48
Jumlah nyamuk dengan larva filaria					
Stadium I (L ₁)	\mathbf{P}_1	6 4	53	34	24
	$\mathbf{P_2}$	55	52	40	20
	$\overline{\mathbf{x}}$	60	52	37	22
	%	71,4	60.4	59,7	45,8
Stadium II (L2)	$\mathbf{P}_{\mathbf{l}}$	8	4	. 0	0
	P_2	12	2	0	0
•	$\overline{\mathbf{x}}$	10	3	0	0
	%	11,9	3,9	0	0
Stadium III (L ₃)	P_1	0	0	0	0
	$\mathbf{P_2}$	0	0	0	0
	$\vec{\mathbf{x}}$	0	0	0	0
	$%^{1}$)	. 0	0	0	0
Semua stadia	P_1	72	57	34	24
	$\mathbf{P_2}$	67	53	40	20
	$\overline{\mathbf{x}}$	70	55	37	22
	$\%^{2)}$	83,3	65,8	57,7	45,8

¹⁾ Angka Infektif (AIn): $\chi^2 = -$; db = -; P - 2) Angka Infeksi (AI) : $\chi^2 = 22.648$; db = 3; P<0.005

Selama masa inkubasi ini semua larvae pada kedua kelompok nyamuk masih berkembang dalam otot thorax (TABEL 3). Tidak ada perbedaan bermakna dalam jumlah larva per nyamuk (JLPN) yang diinfeksi dari kelompok yang diberi obat 100 mg% dibandingkan dengan pada pembanding, yaitu berturutturut 6,1 dan 8,3. Namun, kelompok nyamuk lain yang mendapat larutan obat 200 dan 400 mg% JLPN yang diinfeksi berturut-turut 4,7 dan 3,5, yang sangat berbeda dari apa yang didapat pada kelompok kontrol (P<0,01) (TABEL 3 dan GAMBAR 1).

TABEL 3.— Distribusi larva B. pahangi stadium I (L₁), stadium II (L₂), dan stadium III (L₃) dalam tubuh Ae. togoi dipelihara dengan berbagai konsentrasi amodiaquine selama 4 hari setelah mendapat makan darah kucing. Diamati pada 2 percobaan (P₁ & P₂)

N 1 4 1 1			Dosis (Obaւ (mg%)	
Nyamuk Aedes togoi		0	100	200	400
Jumlah nyamuk dengan larva	P ₁	72	57	34	24
3— ,	P_2	67	53	40	20
	χ̈	70	55	37	22
Jumlah larva <i>B. pahangi</i> dalam tubuh <i>Ae. togoi</i>					
Caput .	$P_1 \\ P_2$	_	_		
Thorax Stadium I (L1)	\mathbf{P}_{1}	512	303	160	73
	P_2	441	306	182	77
	$\overline{\mathbf{x}}$	479	305	171	75
	%	82,4	91,0	100	100
Stadium II (L ₂)	P_1	80	10	_	-
	P_2	124	51	_	-
	$\overline{\mathbf{x}}$	102	31	_	_
	%	17,6	9,0	_	_
Stadium III (L ₃)	\mathbf{P}_{1}	_	_	_	_
	P_2		-	_	
Abdomen	$\mathbf{P_1}$	_	_	_	_
	P_2	_	-	_	_
Semua Bagian	$\mathbf{P_1}$	592	313	160	73
	P_2	570	357	182	77
	$\overline{\mathbf{x}}$	531	335	171	75
	%	100	100	100	100
Jumlah larva per nyamuk					
(JLPN) terinfeksi	$\mathbf{P_1}$	8,2	5,5	4,7	3,0
	P_2	8,5	6,7	4,6	3,9
	$\overline{\mathbf{x}}$	8,4	6,1	4,7	3,5
•	t		3,630	23,401	10,330
	P		> 0,05	< 0,01	< 0,01

Pengamatan pertumbuhan larvae B. pahangi disajikan dalam (TABEL 4 dan GAMBAR 1). Tidak didapat perbedaan bermakna dalam hal ukuran larva L₁ dalam nyamuk kelompok kontrol dan yang diberi larutan amodiaquine 100 dan 200 mg%; berturut-turut adalah 261,8 \pm 60,4 \times 24,1 \pm 1,4 μ , 244,9 \pm 57,1 \times 23,9 \pm 1,5 μ . Dosis tinggi amodiaquine (400 mg%) nampaknya mempengaruhi pertumbuhan L₁ dalam nyamuk, ukurannya adalah 225,4 \pm 29,9 \times 22,3 \pm 1,5 μ , yang berbeda secara bermakna dari yang didapat dalam kelompok kontrol. Pertumbuhan L₂ dalam nyamuk yang diberi larutan amodiaquine 100 mg% nampak tidak dipengaruhi. Ukuran L₂ dalam nyamuk kelompok tersebut adalah 751,5 \pm 57,5 \times 28,6 \pm 1,3 μ , sedangkan yang dalam kelompok kontrol 819,0 \pm 61,1 \times 31,7 \pm 1,5 μ .

TABEL 4. — Ukuran larva B. pahangi dalam Ae. togoi yang dipelihara dengan berbagai konsentrasi amodiaquine selama 4 hari setelah diberi makanan darah kucing. Diamati pada 2 percobaan (P₁ dan P₂)

		0		100		200		400
Dosis Obat (mg%)		Panjang		Panjang		Panjang		Panjang
	n	Lebar	n	Lebar	n	Lebar	n	Lebar
Stadium I				-				
P_1	50	$\frac{268,7 \pm 61,3}{24,2 \pm 1,5}$	50	$\frac{249.3 \pm 61.7}{24.3 \pm 1.6}$	50	$\frac{241,9 \pm 48,6}{23,6 \pm 1,3}$	50	$\frac{229.8 \pm 39.2}{22.4 \pm 1.4}$
P ₂	50	$\frac{254,8 \pm 59,4}{24,0 \pm 1,6}$	50	$\frac{240,1\pm52,4}{23,1\pm1,4}$	50	$\frac{236,1\pm 32,8}{23,0\pm 1,3}$	50	$\frac{221.0 \pm 20.6}{22.1 \pm 1.5}$
Rata-rata		$\frac{261.8 \pm 60.4}{24.1 \pm 1.4}$		$\frac{244,9 \pm 57,1}{23,7 \pm 1,5}$		$\frac{239,0\pm 40,7}{23,3\pm 1,3}$		$\frac{225,4\pm 29,9}{22,3\pm 1,5}$
ι		_		2,177 (p>0,05)		3,0209 (p>0,05)		4,419 (p<0.05)
Stadium II								
P_1	50	$\frac{825,4\pm65,8}{32,6\pm1,4}$	50	$\frac{710,6 \pm 62,4}{29,6 \pm 1,4}$				-
$\mathbf{P_2}$	50	$\frac{812.5 \pm 56.4}{30.8 \pm 1.6}$	51	$\frac{791.3 \pm 52.5}{27.5 \pm 1.2}$		-		-
Rata-rata		$\frac{819.0 \pm 61.7}{31.7 \pm 1.5}$		$\frac{751,5 \pm 57,5}{28,6 \pm 1,3}$		-		-
t		-		1,632 (p>0,05)				_
Stadium III								
P ₁ P ₂						-		_

2. Uji coba delapan hari

Pemeliharaan Ae. togoi tanpa infeksi dengan dosis obat 100, 200 dan 400 mg% berakibat bertambahnya AK nyamuk berturut-turut sampai 22%, 36% dan 59% (TABEL 5 dan GAMBAR 1). Ini nyata lebih tinggi dari AK nyamuk kontrol yang hanya sampai 13% (P<0,005).

Dari pengamatan nyamuk Ae. togoi yang diinfeksi didapat bahwa adanya infeksi memperbesar AK nyamuk, misalnya 29% dibanding dengan 13% pada kelompok yang tanpa infeksi (P<0,05). Penambahan amodiaquine ke dalam larutan gula meningkatkan AK nyamuk yang terinfeksi berturut-turut sampai 51%, 70% dan 89%. Pertambahan tersebut sangat bermakna (P<0,005).

Amodiaquine menunjukkan efek yang nyata terhadap perkembangan larvae B. pahangi dalam nyamuk Ae. togoi. Sangat lebih rendah jumlah larvae yang berkembang menjadi L₃ dalam nyamuk yang mendapat obat, sebaliknya jauh lebih banyak larvae yang masih dalam stadium 1 dan 2, terutama yang di-

TABEL 5.— Efek berbagai dosis amodiaquine pada Angka Kematian (AK) Ae. togoi yang tanpa dan dengan infeksi B. pahangi dipelihara dalam insektarium selama 8 hari setelah diberi makan darah kucing. Diamati pada 2 percobaan (P₁ & P₂) masing-masing 100 ekor nyamuk

				Dosis Ob	oat (mg%)	
Nyamuk Aedes togoi			0	100	200	400
Tanpa infeksi						
Jumlah nyamuk mati		P_l	15	21	25	62
		$\dot{\mathbf{P_0}}$	11	23	37	56
		$\frac{\mathbf{P}_2}{\mathbf{x}}$	13,0	22,0	36.0	59,0
	AK1)	(%)	13,0	22,0	36,0	59,0
Dengan infeksi						
Jumlah nyamuk mati		$\mathbf{P}_{\mathbf{l}}$	31	51	66	37
,		$\mathbf{P}_{0}^{'}$	27	51.	74	91
		$\frac{\mathbf{P_2}}{\mathbf{x}}$	29,0	51,0	70,0	89,0
	AK2)	(%)	29,0	51,0	70,0	89,0
	χ^2		7,715	18,143	23,204	23,389
	P		< 0,05	< 0,005	< 0,005	< 0,005

 AK^{1} : χ^{2} = 54,929; db = 3; P<0,005 AK^{2} : χ^{2} = 82,445; db = 3; P<0,005

beri dosis 200 dan 400 mg%. AI dan AIn nyata lebih rendah dari yang didapat dalam nyamuk kelompok kontrol (P<0,005). AI kelompok kontrol 83,1%, sedang yang pada kelompok perlakuan dengan larutan obat 100, 200 dan 400 mg% berturut-turut 46,9%, 30,0% dan 36,4%. AIn nyamuk yang tanpa obat 60,6%, sedangkan pada kelompok nyamuk perlakuan dengan larutan obat 100, 200 dan 400 mg% berturut-turut adalah 30,6%, 6,7% dan 0% (TABEL 6 dan GAMBAR 1).

Dari pengamatan pada penyebaran larvae B. pahangi dalam tubuh Ae. togoi didapat dalam kelompok kontrol 82,4% total larvae masih ada dalam thorax, sedangkan hanya sebagian kecil, 13,7% dan 3,9%, ada dalam caput dan abdomen (TABEL 7 dan 8). Dalam kelompok nyamuk yang diberi amodiaquine 100 mg%, 95,4% larvae masih terdapat dalam thorax, sedangkan yang 1,5% dan 3,0% berturut-turut dalam caput dan abdomen. Untuk kelompok nyamuk yang dipelihara dengan larutan obat 200 mg% tidak dijumpai larvae dalam caput, sedangkan yang 6,3% dalam abdomen dan sisanya dalam thorax. Tidak ditemukan larvae migrasi keluar dari otot thorax pada nyamuk yang diberi obat 400 mg% selama 8 hari.

JLPN yang diinfeksi dan diberi obat, makanannya lebih rendah secara bermakna dibandingkan dengan yang didapat pada kontrol (0,05>P>0,01). JLPN kelompok kontrol 9,5, sedangkan pada kelompok nyamuk yang dipelihara dengan larutan obat 100, 200 dan 400 mg% JLPN berturut-turut adalah 5,7, 3,9 dan 1,5. Demikian pula jumlah larvae infektif per nyamuk (JLIPN) yang mendapat larutan obat 100, 200 dan 400 mg% berturut-turut 4,9, 1,4 dan 0, yang jelas lebih rendah (P<0,05) daripada kelompok kontrol 8,5 (TABEL 7 dan 8, dan GAMBAR 1).

TABEL 6	Efek berbagai konsentrasi amodiaquine pada perkembangan larva B. pahangi dalam
	Ae. togoi dipelihara selama 8 hari setelah diberi darah kucing. Diamati pada 2 kali
	percobaan (P ₁ & P ₂)

Normalis de des tamé			Dosis Ob	at (mg%)	
Nyamuk Aedes togoi		0	100	200	400
Jumlah nyamuk dibedah	P_1	69	49	34	13
•	$\frac{\mathbf{P_2}}{\mathbf{x}}$	73	49	26	8
	x	71	49	30	11
Jumlah nyamuk dengan larv filaria	a ·				
Stadium I (L ₁)	\mathbf{P}_{1}	_	0	5	4
	P_2	_	2	5	2
	$\overline{\mathbf{x}}$.	_	1	5	3
	%	_	2,0	16,7	27,3
Stadium II (L2)	P_1	13	8	3	1
· -	$\mathbf{P_2}$	19	6	1	1
	x	16	7	2	1
	%	22,5	14,3	6,7	9,1
Stadium III (L ₃)	$\mathbf{P_1}$	44	16	4	0
	P_2	38	14	0	0
	$\overline{\mathbf{x}}$	48	15	2	0
	% ¹⁾	60,6	30,6	6,7	. 0
Semua stadia	$\mathbf{P_1}$	57	24	12	5
	P_2	61	22	6 .	8
	x	59	23	9	4
	% ²⁾	83,1	46,9	30,0	36,4

¹⁾ Angka Infeksi (AIn): $\chi^2 = 41,235$; db = 3; P<0,005

Pemberian amodiaquine nampak menunjukkan efek terhadap pertumbuhan larvae B. pahangi pada Ae. togoi (TABEL 9 dan GAMBAR 1). Ukuran L2 yang ditemukan dalam nyamuk yang diberi obat 100, 200 dan 400 mg% berturut-turut adalah 788,5 \pm 52,9 \times 30,0 \pm 1,5 μ , 726,0 \pm 53,0 \times 29,1 \pm 1,5 μ , dan 660,3 \pm 37,0 \times 28,5 \pm 1,5 μ , sedangkan yang terdapat dalam nyamuk kelompok kontrol adalah 857,2 \pm 61,9 \times 31,6 \pm 1,6 μ , yang berbeda secara bermakna dari yang ada dalam kelompok perlakuan. Pertumbuhan L3 nampak terpengaruh juga karena pengobatan. Ukuran larva L3 dalam nyamuk kontrol adalah 1432,6 \pm 50,5 \times 24,2 \pm 1,2 μ , yang lebih besar (P<0,05) daripada yang terdapat dalam nyamuk yang menghisap obat dosis 100 dan 200 mg%, yaitu berturut-turut 1330,0 \pm 43,3×24,3 \pm 1,4 μ , dan 1247,9 \pm 42,9×23,9 \pm 1,3 μ .

3. Uji coba dua belas hari

Dari percobaan dengan nyamuk Ae. togoi yang tanpa infeksi didapat AK nyamuk yang dipelihara dengan obat 100, 200 dan 400 mg% bertambah secara bermakna berturut-turut sampai 41%, 62%, dan 84% (P<0,005) (TABEL 10 dan GAMBAR 1).

²⁾ Angka Infeksi (AI) : X² = 33,575; db = 3; P<0,005

TABEL 7. — Distribusi larva B. pahangi stadium I (L₁), stadium II (L₂) dan stadium III (L₃) dalam tubuh nyamuk Ae. togoi yang dipelihara dengan berbagai konsentrasi amodi aquine selama 8 hari setelah diberi darah kucing. Diamati pada 2 percobaan (P₁ & P₂)

P ₂)				•	
Nyamuk Aedes togoi			. Dosis	Obat (mg%)	
Nyamuk Aeaes togot		0	100	200	400
Jumlah nyamuk dengan larva	\mathbf{P}_{1}	57	24	12	5
	P_2	61	22	6	3
	x	59	23	9	4
Jumlah larva <i>B. pahangi</i> dalam tubuh <i>Ae. togoi</i>					
Caput (L ₃)	$\mathbf{P_1}$	75	1	_	_
	P_2	79	3		_
	$\frac{-}{x}$	77	2	_	-
	%	13,7	15,0	_	_
Thorax Stadium I(L ₁)	P_1		16	16	4
Thorax Statutin T(2)	P_2	_	8	8	2
	$\frac{1}{x}$		10	10	
	х %	_	12 9 ,2	12 37,5	3 50,0
		_	· ·	•	
Stadium II (L ₂)	$\mathbf{P_1}$	36	10	12	3
	P_2	58	4	8	3
	$\overline{\mathbf{x}}$	47	7	10	3
	%	10,2	5,3	31,3	50,0
Stadium III (L ₃)	P_1	404	_	3	
. 3/	$\mathbf{P_2}$	406	_	11	
	$\bar{\mathbf{x}}$	405	_	8	_
	%	73,2	_	25.0	
Abdomen (L ₃)	\mathbf{P}_{1}	32	5	.2	
Abdomen (L ₃)	$\overset{\mathbf{r}_{1}}{P_{2}}$	32 32	.3	2	_
	x				
	х %	32 3,9	4 3,0	2 6,3	_
		•		•	_
Semua bagian	$\mathbf{P_1}$	557	136 126	85 29	7
	P_2	565	126	29	5
	x	561	131	32	6
	%	100	100	100	100
Jumlah larva per nyamuk					
terinfeksi (JLPN)	$\mathbf{P_l}$.	9,8	5,7	2,9	1,4
	P_2	9,2	5,7	4,8	1,6
	$\overline{\mathbf{x}}$	9,5	5,7	3,9	1,5
	t	_	12,7	9,678	25,29
	р	_	< 0,01	< 0,025	< 0,05

Adanya infeksi B. pahangi pada Ae. togoi nampak memperbesar AK nyamuk, misalnya 48% dibandingkan dengan 15% pada kelompok tanpa infeksi (P<0,005). Pemberian makan larutan amodiaquine 100, 200 dan 400 mg% mengakibatkan pertambahan AK secara bermakna (P<0,005) nyamuk berturut-turut sampai 65%, 82%, dan 93% (TABEL 10 dan GAMBAR 1).

TABEL 8. – Distribusi larva infektif B. pahangi dalam tubuh Ae. togoi yang dipelihara dengan berbagai konsentrasi amodiaquine selama 8 hari setelah diberi darah kucing. Diamati pada 2 percobaan (P₁ & P₂)

Normalis Andread			Dosis Obat	(mg%)		
Nyamuk Aedes togoi		0	100	200	400	
Jumlah nyamuk dengan larva	Pt	57	24	12	_	
	$\mathbf{P_2}$	61	22	6	-	
	×	59	23	9		
Jumlah larva B. pahangi dalam tubuh Ae. togoi						
Caput (L ₃)	P_1	75	1	_		
	\mathbf{P}_{2}	79	3	` -	~	
	$\overline{\mathbf{x}}$	77	2	_	_	
	%	15,3	1,8	-	_	
Thorax (L ₃)	$\mathbf{P}_{\mathbf{l}}$	404	104	5	_	
3,	P_2	406	109	11	_	
	x	405	106	8	_	
	%	80,4	94,6	80,0		
Abdomen (L ₃)	\mathbf{P}_{l}	22	5	2	_	
. •	$\mathbf{P_2}$	22	3	2	_	
	$\overline{\mathbf{x}}$	22	4	2	~	
	%	4,4	3.6	20,0	_	
Semua bagian	P_1	501	110	7	_	
_	\mathbf{P}_{2}^{\cdot}	507	114	13	_	
	$\overline{\mathbf{x}}$	504	112	10	_	
	%	100	100	100		
Jumlah larva infektif						
per nyamuk terinfeksi ([LIPN)	\mathbf{P}_{1}	8,7	4,6	0,6	_	
	P_2	8,3	5,2	2,2	_	
	$\overline{\mathbf{x}}$	8,5	4,9	1,4	_	
	ι	_ `	9,347	18,309	-	
	P	-	< 0,02	< 0,05	_	

Penghambatan perkembangan larva B. pahangi dalam nyamuk Ae. togoi karena pemberian amodiaquine terlihat dalam masa inkubasi ini (TABEL 11). Dalam kelompok nyamuk pembanding semua larvae telah berkembang menjadi larvae infektif, tetapi dalam kelompok perlakuan beberapa larvae masih dalam stadium II (yaitu yang diberi larutan amodiaquine 100 mg%), atau dalam stadium I dan II (yang diberi larutan obat 200 mg%), dan bahkan hanya dalam stadium I dan II (yang diberi 400 mg%). AI dan juga AIn jauh lebih rendah (P<0,005) dalam kelompok perlakuan dibandingkan dengan yang kelompok pembanding. Dalam kelompok yang diberi larutan obat 100, 200 dan 400 mg% AI berturut-turut 34,3%, 27,8% dan 28,6%, sedangkan dalam kelompok kontrol AI 69,2%. AIn dalam kelompok kontrol 69,2%, sedangkan dalam kelompok yang mendapat larutan obat 100, 200 dan 400 mg% berturut-turut 28,6%, 11,1% dan 0% (TABEL 11 dan GAMBAR 1).

TABEL 9. – Ukuran larva B. pahangi dalam nyamuk Ae. togoi dipelihara dengan berbagai dosis amodiaquine selama 8 hari setelah diberi makan darah kucing. Diamati pada 2 percobaan (P₁ & P₂)

		0		100		200		400
Dosis Obat (mg%)		Panjang		Panjang		Panjang		Panjang
	n	Lebar	n	Lebar	n	Lebar		Lebar
Stadium I								
\mathbf{P}_{1}		_	16	315.4 ± 60.3	16	291,2 ± 64,5	4	$\frac{269,8 \pm 43,7}{}$
-1				24,9 ± 1,5		24,3 ± 1,4	-	$24,0 \pm 1,3$
P,		_	8	$\frac{335,2 \pm 65,1}{}$	8	$286,7 \pm 56,8$	2	$262,3 \pm 48,9$
* 2			Ů	$24,7 \pm 1,7$	Ü	24,1 ± 1,4	-	23,8 ± 0,4
Rata-rata				325.3 ± 62.7		289.0 ± 60.7		266,1 ± 46,3
		_		24,8 ± 1,6	•	24,2 ± 1,4		$23,9 \pm 1,4$
ι				_		_		_
Stadium II		867,5 ± 62,3		780,7 ± 50,2		721,4 ± 52,4		667,2 ± 41,8
P_1	56	$\frac{32,1\pm 1,6}{32,1\pm 1,6}$	10	$\frac{700,7\pm30,2}{20,2\pm1,4}$	12	$\frac{721.4 \pm 32.4}{29.2 \pm 1.4}$	3	28,9 ± 1,4
P_2	58	$\frac{846,9 \pm 61,4}{80.6 \pm 1.5}$	4	$\frac{796,3 \pm 55,6}{30.5 \pm 1.5}$	8	$\frac{730,5 \pm 53,6}{90.0 \pm 1.5}$	3	653,4 ± 32,2
B		30,6 ± 1,5		39,5 ± 1,5		29,0 ± 1,5		28,1 ± 1,5
Rata-rata		$857,2 \pm 61,9$		788,5 ± 52,9		$\frac{726,0 \pm 53,0}{20,1 + 1.5}$		$\frac{660.3 \pm 37.0}{20.5 \pm 1.5}$
		31,4 ± 1,6		30,0 ± 0,5		29,1 ± 1,5		28,5 ± 1,5
t				5,317 (P<0,05)		7,959 (P<0,01)		15,882 (P<0,01)
Stadium III				(1 10,00)		(1 10,01)		(2 10,02)
		$1454,8 \pm 52,3$		1316,4 ± 42,8		1210,3 ± 48,2		_
P_1	56	24,2 ± 1,3	50	24,3 ± 1,4	5	24,1 ± 1,4		
		1410,4 ± 48,6		1349,6 ± 43,7		1255,4 ± 36,8		-
P_2	58	24,4 ± 1,3		24,2 ± 1,3	11	23,6 ± 1,2		
Rata-rata		1432,6 ± 50,5		1333.0 ± 43,3		1232,9 ± 42,5		_
		24,3 ± 1,3		24,3 ± 1,4		23,9 ± 1,3		
ι		_		3,593		6,312		_
				(P>0,05)		(P<0,05)		

Pemberian amodiaquine nampak menghambat migrasi sebagian larvae B. pahangi dalam nyamuk Ae. togoi (TABEL 12). Dalam kelompok kontrol 69,7% jumlah larvae telah migrasi ke kepala, tetapi hanya 26,8% dan 7,1% jumlah larvae yang didapat dalam kelompok nyamuk yang menghisap obat 100 dan 200 mg% JLPN terinfeksi yang diperlakukan nyata menurun (P<0,05); pada konsentrasi 100, 200 dan 400 mg% amodiaquine JLPN berturut-turut 3,5; 3,1 dan 1,5 (TABEL 12 dan GAMBAR 1). Juga JLIPN terinfeksi dan diberi makan larutan obat nampak berkurang secara bermakna (P<0,05). Dalam kelompok kontrol JLIPN sebesar 9,9, sedangkan dalam kelompok nyamuk yang diberi larutan obat 100 dan 200 mg% JLPN berturut-turut 3,2 dan 2,6 (TABEL 13 dan GAMBAR 1).

TABEL 10. - Efek berbagai dosis amodiaquine pada Angka Kematian (AK) Ae. togoi yang tanpa dan dengan infeksi B. pahangi dipelihara dalam insektarium selama 12 hari setelah diberi makan darah kucing. Diamati pada 2 percobaan (P1 & P2) masing-masing 100 ekor nyamuk

Numuk Andretogoi				Dosis Ob	aι (mg%)		
Nyamuk Aedes togoi			0	100	200	400	
Tanpa infeksi							
Jumlah nyamuk mati		P_l	18	42	60	83	
-		P ₂	12	40	64	85	
		$rac{P_2}{x}$	15,0	41,0	62,0	84,0	
	AK1)	(%)	15,0	41,0	62,0	84,0	
Dengan infeksi							
Jumlah nyamuk mati		P_1	51	66	84	91	
		P ₂	45	64	80	90	
		$\frac{\mathbf{P}_2}{\mathbf{x}}$	48,0	65,0	82,0	93,0	
	AK ²)	(%)	48,0	65,0	82,0	93,0	
		χ2	78,266	11,562	9,921	3,979	
		P	< 0,05	< 0,005	< 0,005	> 0,05	

 $AK^{(1)}$: $\chi^2 = 104,210$; db = 3; P < 0,05 $AK^{(2)}$: $\chi^2 = 104,695$; db = 3; P < 0,001

TABEL 11. – Efek berbagai dosis amodiaquine pada perkembangan larva B. pahangi dalam Ae. togoi dipelihara selama 12 hari setelah diberi darah kucing. Diamati pada 2 percobaan (P₁ & P₂)

Number dadas tamai			Dosis Ob	at (mg%)	
Nyamuk Aedes togoi		0	100	200	400
Jumlah nyamuk dibedah	Pi	49	34	16	4
•	$\frac{P_2}{x}$	55	36	20	10
	x	52	35	18	7
Jumlah nyamuk dengan larva fi	laria				
Stadium I (L ₃)	P_1 .	0	0	0	0
	$\mathbf{P_2}$	0	0	2	2
	$\overline{\mathbf{x}}$	0	0	1	1
	%	0	0	5,6	14,3
Stadium II (L ₃)	P_1	0	1	2	1
	P_2	0	3	2	1
	$\overline{\mathbf{x}}$	0	2	2	1
	%	0	5,7	11,1	11,3
Stadium III (L3)	P_1	33	9	2	0
	$\mathbf{P_2}$	39	11	2	0
	$\overline{\mathbf{x}}$	36	10	2	0
	. %1)	69,2	28,6	11,1	0
Semua stadia	$\mathbf{P}_{\mathbf{l}}$	33	10	4	1
	P_2	39	14	6	3
	$\overline{\mathbf{x}}$.	. 36	12	5	2
	% ²⁾	69,2	34,3	27,8	28,6

Angka Infeksi (AIn): X² = 30,277; db = 3; P<0,005
 Angka Infeksi (AI) : X² = 15,745; db = 3; P<0,005

TABEL 12. — Distribusi larva B. pahangi stadium I (L₁), stadium II (L₂) dan stadium III (L₃) dalam tubuh Ae. togoi yang dipelihara dengan berbagai konsentrasi amodiaquine selama 12 hari setelah diberi darah kucing. Diamati 2 kali percobaan (P₁ & P₂)

Nyamuk Aedes togoi		Dosis Obat (mg%)				
Nyamuk Aedes togot		0	100	200	400	
Jumlah nyamuk dengan larva	${P_1}\atop {P_2}$	33 39	10 14	4 6	1 3	
	$\bar{\mathbf{x}}$	36	12	5	2	
Jumlah larva B. pahangi dalam tubuh Ae. togoi			,			
Caput (L3)	$egin{array}{c} P_1 \ P_2 \end{array}$	221 227	8 14	0 2	0 0	
,	≖ %	249 69,7	11 26,8	l 7,1	0 0	
Thorax Stadium I (L ₁)	$\begin{array}{c} P_1 \\ P_2 \end{array}$	- -	_ _	-	0 2	
	x %				l 33,3	
Stadium II (L ₂)	${\rm P_1}\\{\rm P_2}$	- -	2 6	2 2	2 2	
	⊼ %	_	4 9,8	2 14,3	2 66,7	
Stadium III (L ₃)	${\rm P}_1\\{\rm P}_2$	81 85	21 15	8 4	_ _	
	≅ %	83 23,2	18 13,9	6 42,9	_	
Abdomen (${f L}_3$)	$egin{array}{c} \mathbf{P_1} \\ \mathbf{P_2} \end{array}$	21 29	8 8	7 3	0 0	
	∝ %	25 7,0	8 19,5	5 35,7	0 0	
Semua bagian	$egin{array}{c} \mathbf{P_1} \\ \mathbf{P_2} \end{array}$	323 391	39 43	17 11	2 4	
	x %	257 100	41 100	14 100	3 100	
Jumlah larva per nyamuk terinfeksi (JLPN)	P ₁ P ₂	9,8 10,0	3,9 3,1	4,3 1,8	1,0 2,0	
		9,9 —	3,5 15,522	3,1 5,463	1,5 16,74	
	Р		< 0.01	< 0,05	< 0.0	

Efek amodiaquine terhadap pertumbuhan larva B. pahangi dalam nyamuk Ae. togoi disajikan dalam TABEL 14 dan GAMBAR 1. Ternyata ukuran larva infektif dalam kelompok nyamuk perlakuan jauh lebih kecil daripada yang dalam kelompok kontrol. Ukuran L_3 dalam kelompok kontrol adalah $1604,6\pm65,6\times24,5\pm1,3\,\mu$, sedangkan yang dalam nyamuk dengan pengobat-

TABEL 18. — Distribusi larva infektif B. pahangi dalam tubuh Ae. togoi yang dipelihara dengan berbagai dosis amodiaquine selama 12 hari setelah diberi darah kucing. Diamati pada 2 percobaan (P₁ & P₂)

Number Andreas	Dosis Obat (mg%)						
Nyamuk Aedes togoi		0	100	200	400		
Jumlah nyamuk dengan larva	$\mathbf{P}_{\mathbf{I}}$	33	10	4			
	P ₂ ×	39 36	14 12	6 5	3 2		
Jumlah larva infeksi B. pahangi dalam tubuh Ae. togoi							
Caput (L ₃)	P_1	221	8	1	0		
	P_2	277	14	1	. 0		
	x	249	11	1	0		
	%	69,7	19,7	8,3	0		
Thorax (L _q)	P_1	81	21	8	0		
(-3)	$\mathbf{P_2}$	83	15	4	0		
	x	82	18	6	0		
	%	23,2	48,6	50,0	0		
Abdomen (L ₄)	P_1	21	8	7	0		
. 37	P_2	29	8	3	0		
	x	25	8	5	0		
	%	7,0	21,6	41,7	0		
Semua bagian	\mathbf{P}_{1}	323	37	15	0		
· ·	$\mathbf{P_2}$	391	37	9	0		
	x	357	37	12	0		
	- %	100	100	100	0		
Jumlah larva infeksi per							
nyamuk terinfektif (JLIPN)	\mathbf{P}_{1}	9,8	3,7	3,8	0		
	$\mathbf{P_2}$	10,0	2,6	1,5	0		
	ż	9,9	3,2	2,6	0		
	ι	_	12,075	6,286	0		
	P		< 0,01	< 0,025	0		

an larutan amodiaquine 100 dan 200 mg% berturut-turut 1411,8 \pm 52,0 \times 24,1 \pm 1,3 μ dan 1353,3 \pm 23,3 \times 24,0 \pm 1,3 μ .

PEMBAHASAN

Hasil-hasil uji coba tingkat pertama amodiaquine dengan menggunakan infeksi model B. pahangi — Ae. togoi menunjukkan bahwa, seperti klorokuin (Mardihusodo, 1981), bersifat aktif sebagai insektisida sistemik. Sekurangkurangnya pada konsentrasi 400 mg% amodiaquine meningkatkan AK nyamuk Ae. togoi tanpa infeksi B. pahangi sampai lebih dari 50%, dan pada konsentrasi 100—400 mg% amodiaquine memperbesar AK nyamuk dengan infeksi filarial sampai lebih dari 50%.

Aktivitas antifilarial amodiaquine dalam infeksi model ini telah diketahui pada uji coba empat hari, terutama pada kelompok nyamuk yang dipelihara

TABEL 14. — Ukuran larva B. pahangi dalam Ae. togoi dipelihara dengan berbagai dosis amodiaquine selama 12 hari setelah diberi makan darah kucing. Diamati pada 2 percobaan (P₁ dan P₂)

		0		100		200		400	
Dosis Obat (mg%)		Panjang	n	Panjang	. —— п	Panjang		Panjang	
	n	Lebar		Lebar		Lebar	n	Lebar	
Stadium I		-							
\mathbf{P}_1		_		_		-		_	
P_2		_		_			2	304,2 ± 11,4	
Каца-таца		_		_				25,2 ± 1,5 —	
t (P)		-		-		- '		_	
Stadium II									
\mathbf{P}_1		_	2	$836,7 \pm 12,9$	2	762.6 ± 10.8	2	690,8 ± 10,2	
* 1			٤	29,8 ± 1,4		29,8 ± 1,4	L	29,1 ± 1,3	
			_	$810,2 \pm 16,5$	_	744.5 ± 11.4	_	$710,4 \pm 11,5$	
P_2		_	6	29,2 ± 1,5	2	29,2 ± 1,4	2	28,9 ± 1,4	
Rata-tata		_		823.5 ± 14.7		$753,6 \pm 11,1$		700.5 ± 10.9	
Ratariata				29.5 ± 1.5		28,9 ± 1,4		29,0 ± 1,4	
t (P)		_		-		.—		_	
Stadium III									
\mathbf{P}_1	60	$\frac{1612,8 \pm 68,7}{}$	21	$1420,8 \pm 41,7$	8	$1321,2 \pm 29,6$			
-1	11 00	$24,6 \pm 1,6$	۵.	$24,2 \pm 1,3$	·	$24,1 \pm 1,4$			
P ₂ 60	-	$1596,4 \pm 62,3$		$1442,8 \pm 36,2$	4	$1385,4 \pm 16,9$			
	60	24,4 ± 1,4	35	24,2 ± 1,3		23,8 ± 1,2			
Rata-rata		$1604,6 \pm 65,6$		$1431,8 \pm 52,0$		$1353,3 \pm 23,3$			
		24,5 ± 1,5		24,1 ± 1,3		24,0 ± 1,3	•		
t		-		12,595 (P<0,01)		10,22 (P<0,05)			

dengan larutan amodiaquine 400 mg%: JLPN terinfeksi berkurang sampai lebih dari 50%, dan pertumbuhan larva stadium I sangat terhambat; AI dan AIn berkurang sampai lebih dari 50%, demikian pula JLIPN terinfeksi yang diberi larutan obat 200—400 mg% pada akhir uji coba delapan hari. Pada tingkat perlakuan ini larva stadium II dan III yang didapat terbukti lebih kecil dan lebih lambat migrasinya dibandingkan dengan yang terdapat dalam kelompok nyamuk kontrol. Kerja filarisidal yang pasti telah ditunjukkan amodiaquine dalam infeksi model B. pahangi — Ae. togoi, di mana senyawa itu menurunkan AIn dan JLIPN terinfeksi sampai lebih dari 50% dan larva stadium III jauh lebih kecil dan lambat migrasinya dibandingkan dengan yang dijumpai dalam kelompok kontrol.

Mekanisme kerja amodiaquine baik sebagai insektisida maupun sebagai antifilarial dalam infeksi model B. pahangi — Ae. togoi tampaknya sama seba-

gai yang ditunjukkan oleh klorokuin, yaitu menghambat replikasi protein lewat interkalasi dengan DNA primer dalam sel jaringan tubuh nyamuk (Pinder, 1973). Juga, seperti klorokuin, senyawa ini dapat menghasilkan efek sitotoksik karena terkumpulnya bahan tersebut dalam lisosom yang mengakibatkan pecahnya kantong enzim hidrolitik dan akhirnya lisis sel-sel jaringan. Kedua cara kerja tersebut barangkali yang menyebabkan kematian nyamuk. Terganggunya sintesis protein dalam sel-sel jaringan nyamuk, sebagaimana juga dalam sel-sel otot thorax, mengakibatkan berkurangnya jumlah mitokondria, yang merupakan bahan nutrisi penting bagi larva Brugia (Beckett & Bothroyd, 1970).

KESIMPULAN

Dari uji coba tingkat pertama obat antimalaria amodiaquine sebagai antifilaria dengan menggunakan infeksi model B. pahangi — Ae. togoi, dengan obat dilarutkan dalam larutan gula 10% dengan konsentrasi 100 mg%, 200 mg% dan 400 mg% yang kemudian dipakai untuk memelihara nyamuk yang tanpa infeksi dan dengan infeksi B. pahangi, selama 4, 8 dan 12 hari diketahui, bahwa amodiaquine menyebabkan berkurangnya secara bermakna AK nyamuk; ini menunjukkan bahwa amodiaquine bersifat insektisidal.

AI dan AIn dan juga JLPN yang terinfeksi B. pahangi menurun secara bermakna tergantung pada konsentrasi obat, karena kerja obat dan mungkin juga lepasnya larva infektif sewaktu menghisap air gula. Amodiaquine secara nyata menghambat perkembangan, pertumbuhan dan migrasi larva dalam tubuh nyamuk. Ini berarti amodiaquine menunjukkan aktivitas sebagai filarisida.

KEPUSTAKAAN

- Beckett, E. B., & Bothroyd, B. 1970 Mode of nutrition of the larvae of filarial nematode Brugia pahangi. Parasitology 60(1):21-6.
- Elslager, E. K., Pericone, S. C., & Tendick, F. H. 1969 Antifilarial agents: I. Effects of 4-(17-chloro-4-quinoly) amino a-(mono- and dialkylamino)-O-cresols and related compounds against *Litomosoides carinii* in gerbils. J. Mednl. Chem. 12(4):965-70.
- Gerberg, E. J. 1970 Manual for mosquito rearing and experimental techniques. AMCA Bull. 5, AMCA Inc., Fresno, Calif.
- Lamler, G., Herzog, H., & Schultze, H. R. 1971 Chemotherapeutic studies on Litomosoides carinii infections of Mastomys natalensis: III. The activity of drugs against adult parasites. Bull. WHO 44(4):751-6.
- Mardihusodo, S. J. 1981 The Effects of Antifilarials and Antimalarials on Brugia pahangi Infection in Aedes togoi. Thesis M. Sc. (Trop. Med.). Mahidol University, Bangkok.
- McMahon, J. E. 1979 Preliminary screening of antifilarial activity of levamisole and amodiaquine on Wuchereria bancrofti. Ann. Trop. Med. Parasit. 73(5):465-72.
- Pinder, R. M. 1973 Malaria. Scientechnica Ltd., Bristol.
- Ramachandran, C. P., Wharton, R. H., & Dunn, F. L. 1963 Aedes (Finlaya) togoi Theobald, a useful laboratory vector in studies of filariasis. Ann. Trop. Med. Parasit. 57(2):443-5.
- Thomson, B. C., Boche, L., & Blair, L. S. 1968 Effects of amodiaquine against *Litomosoides carinii* in gerbils and cotton rats. J. Parasit. 54(4):834-7...
- World Health Organization 1974 Expert Committee on Filariasis, Third Report. WHO Tech. Rep. Ser. 542, Genève.