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Intisari 

Di dalam paper ini, akan didiskusikan masalah pencarian batas atas dan norma 
operator matrik Hausdorff pada beberapa ruang barisan. 

Kata kunci: norma-F, fungsi- , matriks Hausdorff, batas atas. 

 

Abstract 

In this paper, we considered the problem of finding the upper bound and the norm of 

the Hausdorff matrix operator on some sequence spaces.  

Keywords: F-norm,  -function, Hausdorff matrix, upper bound. 

 

1. Preliminaries and Some Basic Notions 

Operator theory plays an important role in both pure and applied mathematics. 

Therefore, it always receives a lot of attention from mathematicians from those areas. 

In this paper, we discuss about the norm of a certain matrix operator on a certain 

sequence space. The key references are Jameson and Lashkaripour [2000], [2002], 
Lashkaripour [2002],[2004],[2005], and Pecari et.al [2001].  

In this section, we give some basic notions. As usual, R and N denote the real and 

natural numbers system, respectively. R+
 denotes the collection of all positive real 

numbers. The collection of all sequences in R will be denoted by S. 

Let X  S  be a linear space over R. A function X:  R  is called an F-norm 

if it satisfies 

(i) 0x  for every Xx , 

 00  xx , 

(ii) yxyx   for every Xyx , , and 

(iii) if   Xxn   is a sequence such that 0lim 


xxn
n

 for some Xx , 

and  na  is a sequence of real numbers which converges to some Ra , 

then 0lim 


axxa nn
n

. 
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The linear space X equipped with the F-norm , denoted ),(X , is called an F-

normed space. When the F-norm  has been explicitly known, we write X instead of 

),(X . An F-normed space is said to be complete if every Cauchy sequence in the 

space is convergent. A complete F-normed space is called a Frèchet space or shortly an 
F-space. 

 A function RR :  is called a  -function if  it satisfies 

(i)     00)(  xx , 

(ii)    )()( xx   , for every x  R, 

(iii)     is increasing on R +, 

(iv)     is continuous on R, and 

(v)    


)(lim x
x

 . 

A  -function   is said to satisfy a 2 -condition if there exists a real number 0M  

such that )()2( xMx    for every 0x . For any sequence of positive numbers 

 nvv   and  -function   that satisfies 2 -condition, we define 

,)(:}{

1 












 



n

nn xxl  S

 









 


1

)(.:}{)(
n

nnn xvxvl  S

. 

We observe that )(and vll   are complete F-norm spaces with respect to  


.  and 
v,

.


, 

respectively, where 








1

)(

n

nxx 


 and  








1
,

)(.

n

nnv
xvx 



. 

In case,  ptt
p

1,)( , we write )(vl p  instead of )(vl . 

Let  nww   be a decreasing positive sequence of real numbers such that 

0lim 


n
n

w  and 


1n

nw . We define  

 








 


1

*:}{),(
n

p

nnn xwxxpwd

 

where  *

nx  is a decreasing sequence which can be found by rearranging  nx . It can be 

shown that ),( pwd  is a space of all sequences with finitely non-zero elements. Further, 
),( pwd  is an F-normed space with respect to  

pwpwd
xx

,

*
),(


. 
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2. Matrix Operators  

Let  na  be a sequence of real numbers with 11 a . For any }0{Nn , we 

define the operator n  as follows 

kk aa 0

, 1

1

 kkk aaa
, and 

...,4,3,2),( 11   naa k

n

k

n

 

Further, the matrix 
)( ijhH 

, where  
















ij

ijaC
h

j
jii

j
ij

,0

1,.1
1

 
is called the Hausdorff matrix. 

 Let   be a probability measure on ]1,0[ . For any Nn , we define the 

sequence  na  by 

  
1

0

1 ,...3,2,1),( nxdxa n
n 

 

then we get the Hausdorff matrix 
)()( ijhH 
, with  













 




ij

ijxdxxC
h

jiji
j

ij

,0

1,)()1(.

1

0

11
1



 
The followings are some kind of Hausdorff matrices: 

1. )()(  HC  , where 1)1()(  
  ttd , 

2. )()(0  HH  , where dt
t

td
)(

log
)(

1













, and 

3. )()(  HG  , where dtttd 1)(  
  , 

where 0  is any real number. The matrices )(and),(),( 0  GHC  are called a 

Cesaro, Holder, and Gamma matrix respectively. 

Let  nvv   and  nww   be sequences of positive numbers. We consider the 

matrix operator )()(: wlvlA     

 nyyAx 
, 








1

,

j

jjnn xay

. 
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The norm of A is given by  

 1),(:sup
,,


vw
xvlxAxA
 . 

  

 We observe the following theorem. 

 

Theorem 2.1 Let  nww   be a decreasing sequence of positive real numbers. If the 

Hausdorff matrix operator )(H  maps the space )(wl  into itself, then 

w
k

n

nk
w

x
w

w
Hx

,,
sup






 

Proof: For simplicity, we write HH )( . Take any )(wlx  , then 

 

  ..sup.sup

)()1(..

,

1

1 1

1

0

1

1

1

1
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,

w
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i j
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x
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
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


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




































 



 
 

 As a straight consequence, we then have the following corollary. 

 

Corollary 2.2 If the Hausdorff matrix operator )(H  maps the space l  into itself, then 

1
1,



H . 

 

In case, the  -function   is of the form 
p

xx )( ,  p1 , then we get 

inequalities for the Hausdorff matrix operator H.  

  

Theorem 2.3 Let  nvv   and  nww    be decreasing sequences of positive numbers, 

with 11 v . If the Hausdorff matrix operator )(H  maps )(vl p  into )(wl p ,  p1 , 

then 

























1

0

1
11

0

1
1

)(sup)(inf tdt
v

w
Htdt

v

w p
p

n

np
p

n

n 

. 

Proof: We write HH )(  for the simplicity. Let )(vlx p , then 
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p
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p
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.)(.sup

.)(.sup

,

1

0

1

1

1

0

1

p

pv

p

p

n

n

i

p

ii

p

p

n

n

xtdt
v

w

xvtdt
v
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




















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



















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These prove the right hand side of the inequality. Further, we are going to prove the left 

hand side of the inequality.  

 Let 
p

1
0   ,  )1()( p

n nx , and )1,0( . It is clear that   pn lx  . Since 

10  nv  for every Nn , then   )(vlx pn  . Take Nand  such that 

,)1(

and,),()1()(

,1
1

1

1

1

0

1

1

1

2






























k

p

kk

Nk

p

kk

p

n

p

p

xwxw

Nntdttdt










 
then 

  .,)(.1

)()1()(

1

0

12

1

1

0

11

1

Nntdtx

xtdttCHx

p

n

n

k

k

knkn

kn




















 













 
Hence 

  .,)(.1)(

1

0

1121 NntdtxwHxw p

n

p

nn

p

n  
   

Further, 
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These implies 
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1
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



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






 
 

.  
 

If in the Theorem 2.4, we take nn wv 
 for every n, then we get the following 

corollaries.  

Corollary 2.5 If the  Hausdorff matrix )(H  maps the space )(wl p  into  itself, then  



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0

1

,
)(tdtH p

wp


. 

Corollary 2.6 Let  qp,1  be such that 1
11


qp
. If the matrices ),(C  

)(and),(0  GH  map the space )(wl p  into itself, then  
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Let  nww   be a monoton decreasing sequence of positive real numbers such that 

0lim 


n
n

w  and 


1n

nw . We define 

 








 


1

*:}{),(
n

p

nnn xwxxpwd

 

where  *
nx  is a monoton decreasing sequence found by rearranging the sequence  nx . 

It can be proved that ),( pwd  is a space that its members are all finite sequences. 

Further, ),( pwd  is an F-normed space with respect to 

 

pwpwd
xx

,

*
),(


. 
 

Lemma 2.7 Let 1p  and  jiaA ,  be the operator on ),( pwd  that satisfies 

(i)   0, jia  for every ji , , and 

(ii) ji

n

j

m

iKj

ji

Mi

aa ,

11

, 


  for every subset NKM ,  that consists of  

nm,  elements, respectively. 

Then for every non negative elemen ),( pwdx , we have  

),(

*
),( pwdpwd

AxAx 

. 
 

Proof: See Lashkaripour R. [2002].  

Lemma 2.8 Let 1p  and  
ijaA   be an operator from ),( pwd  into itself such that 

0ija  for every ji and . If for every ),( pwdx ,  

t

j

jij xaAx













 



1  
then the following statements are equivalent. 

(a) 0...21  yy  whenever 0...21  xx . 

(b) 




n

j

ijin ar
1

is a sequence such that inni rr  )1(  for every  n. 
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Proof: 

)b()a(  : Let ),( pwdx  be an arbitrary, then ,...)0,0,,...,,( 21 nxxxx   for some 

Nn . If ,...)0,0,1,0,...0(ke , that is a sequence with the thk -coordinate is equal to 1 

and the others are 0, then 




n

k

kk exx

1

. Further, by the hypothesis we have 

j

n

j

jiijii xaayy 


 
1

)1(1 )(0

. 

)a()b(  : If ),( pwdx , then ,...)0,0,,...,,( 21 nxxxx   for some Nn . For any i, 

we have 

   

     ....

...

1,232,121,

1,,21,2,11,

1

,






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n

j
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xxrxxrxxr
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Hence, 
01  ii yy

 whenever 0...21  xx .  

 

 

Let )(H  be a Hausdorff matrix such that ij

n

j

m

iKj

ij

Mi

aa 



11

 for any subset 

NKM , , which consist of nm,  elements, respectively. Following Lemma 2.7 and 

Lemma 2.8, then for any non negative decreasing sequence x we have 

pwpwd
HxHx

,),(
 . 

Further, by using Theorem 2.4, we have the following theorems. 

 

 

Theorem 2.9 Let 1p  and )(H  be a Hausdorff matrix operator such that 

ij

n

j

m

iKj

ij

Mi

aa 



11

 for any subsets NKM , , which consist of nm,  

elements, respectively. Then )(H  maps ),( pwd  into itself and  




1

0

1
),(

)( pdtH p
pwd



. 
 

Theorem 2.10 Let  
ijaA   be a matrix that satisfies the conditions (i) and (ii)  in 

Lemma 2.7 and 


1

1.
i

ii aw  be convergent. If  nv  is a sequence such that 



Supama, Upper Bound forMatrix Operators ... 

62 

 


n

n

V

S
sup

 

where 





11

.,
k

knkn

n

k

kn awssS , and 



n

k

kn vV
1

, then A is a bounded linear operator 

from )1,(into)1,( wdvd  and 

n

n
wv V

S
A sup

1,,


. 

Proof: Let )1,(vdx be sequence such that 0...21  xx . If 
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then 

1,1, vw
xMAx 

. 

This implies MA
wv


1,,
. 

 Further, by letting 1...21  nxxx  and 0knx  for every Nk , then 

we have  

nwnv
SAxVx 

1,1,
and

. 

So, MA
wv


1,,

. 
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3. Concluding Remarks 

In this paper, we have succesfully constructed the sequence spaces )(vl  and ),( vd , 

which is an F-space, respectively. Further, ),( vd  is a sequence space where all of its 

elements are finite sequences. By restricting the function   of the form 

 ptt
p

1,)( , then we can formulate the upper bound and norm of certain 

matrix operator on ),(and)( pvdvl p . The works will be continued for matrix operators 

act on )(vl  and ),( vd .  
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