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Intisari

Di dalam paper ini, akan didiskusikan masalah pencarian batas atas dan norma
operator matrik Hausdorff pada beberapa ruang barisan.

Kata kunci: norma-F, fungsi- ¢ , matriks Hausdorff, batas atas.

Abstract

In this paper, we considered the problem of finding the upper bound and the norm of
the Hausdorff matrix operator on some sequence spaces.

Keywords: F-norm, ¢ -function, Hausdorff matrix, upper bound.

1. Preliminaries and Some Basic Notions

Operator theory plays an important role in both pure and applied mathematics.
Therefore, it always receives a lot of attention from mathematicians from those areas.
In this paper, we discuss about the norm of a certain matrix operator on a certain
sequence space. The key references are Jameson and Lashkaripour [2000], [2002],
Lashkaripour [2002],[2004],[2005], and Pecari et.al [2001].

In this section, we give some basic notions. As usual, R and /V denote the real and
natural numbers system, respectively. R* denotes the collection of all positive real
numbers. The collection of all sequences in R will be denoted by &.

Let X = & be a linear space over R. A function | |[: X — R is called an F-norm
if it satisfies
(i) |X[>0 for every xe X,

IX|=0<x=0,
(i) |x+y|<|x|+]y| forevery x,y e X , and

(iii) if {x,}< X is a sequence such that lim |x, —x|=0 for some x € X,

n—oo

and {a,} is a sequence of real numbers which converges to some ac R,

then lim [anx, —ax|=0.
n—oo
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The linear space X equipped with the F-norm | |, denoted (X,| [), is called an F-
normed space. When the F-norm | | has been explicitly known, we write X instead of

(X, ). An F-normed space is said to be complete if every Cauchy sequence in the

space is convergent. A complete F-normed space is called a Frechet space or shortly an
F-space.

A function ¢: R — R is called a ¢ -function if it satisfies

N ¢(xX)=0<=x=0,

(i)  @d(—x)=¢(x), forevery x e R,

(iii) ¢ isincreasingon R,

(iv) ¢ iscontinuous on R, and

(V)  lim ¢(x)=o0.

X—>00

A ¢-function ¢ is said to satisfy a o, -condition if there exists a real number M >0
such that ¢(2x) < Mg¢(x) for every x>0. For any sequence of positive numbers
v=1{v, } and ¢-function ¢ that satisfies &,-condition, we define

Iy —{{xn}ecs: Z¢(xn><oo},

n=1
l,(v) = {{Xn}e 5 Zvn H(x.) < oo}

We observe that |, and 1,(v) are complete F-norm spaces with respect to ||| , and I s
respectively, where

”X”¢ = Z¢(Xn) ||X||¢’V = Zvn-¢(xn)
n=1 n=1

and
In case, ¢(t) =[t|”, 1< p <o, we write I (v) instead of 1(v).

Let W:{Wn} be a decreasing positive sequence of real numbers such that

lim w, =0 and an =o0. We define

n—o0
n=1

d(w, p) = {x ={x.}: Zwlwn (x:)p < oo}

where {xn} is a decreasing sequence which can be found by rearranging {]xn|}. It can be

shown that 4(W: P) js 4 space of all sequences with finitely non-zero elements. Further,
d(W, P) j5 an F-normed space with respect to

*

X

”X”d(w, o) ~ 1™ w,p
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2. Matrix Operators
Let {a,} be a sequence of real numbers with a =1. For any ne N U{0}, we

define the operator A" as follows
ANa, = a Aa, =a, =81 and
A'a, =A""(Aa,), n=2,34,..

Further, the matrix H = (hij) , Where

i-1 Ai—j.. o
hyj = Cj_l.A aj , 1l<j<i
0 , >
is called the Hausdorff matrix.

Let x be a probability measure on [0,1]. For any ne /N, we define the
sequence {a, } by

1
an :Ix“_ldy(x), n=123,..
0
then we get the Hausdorff matrix H(x) = (hyj) , with
1
i-1 [y i1 _yyi~] 1<i<i
y = Cj_ljx Q-x"ldu(x) , 1<j<i
0
0 , >

The followings are some kind of Hausdorff matrices:
1. C(ar) = H(u, ), where dg, (t) = a(l—t)* 1,

llog t|0‘_1

2. Ho(a) =H (,ua), where d,ua (t) = W

dt, and

3. G(a) = H(u,), where du, (t) = ot Ldt

where @ >0 s any real number. The matrices C(«),H,(«), and G(«) are called a
Cesaro, Holder, and Gamma matrix respectively.

Let v={v,} and w={w,} be sequences of positive numbers. We consider the
matrix operator A: I¢(v) - |¢(W)

AX:y:{Yn}

)

o0
Yn :Zan,jxj
j=1
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The norm of A is given by
| A = sup{/Ax| g XElG O, X gl}_

We observe the following theorem.

Theorem 2.1 Let w= {wn} be a decreasing sequence of positive real numbers. If the
Hausdorff matrix operator H (x) maps the space 14(w) into itself, then

W
H < -n
[ < s

Proof: For simplicity, we write H(z) =H . Take any x el,(w), then

I, = > -{ZCHU t“<1t>"'du<t>}xj}

i=1 j=1
<sup D )= s

As a straight consequence, we then have the following corollary.

Corollary 2.2 If the Hausdorff matrix operator H (z) maps the space I¢ into itself, then
H[,, <1.

In case, the ¢-function ¢ is of the form ¢(x):|x|p, 1< p<oo, then we get
inequalities for the Hausdorff matrix operator H.

Theorem 2.3 Let v={v,} and w={w,} be decreasing sequences of positive numbers,
with vy =1. If the Hausdorff matrix operator H(z) maps I, (v) into I5(w), 1< p <oo,
then

Upl pl
(inf %j j Y Pdu(t) < |H| < (supmj jt_l/ Pdu(t)
0 Vn 0

Vn

Proof: We write H(x) =H for the simplicity. Let x €1, (v), then

57



Supama, Upper Bound forMatrix Operators ...

0

< ZZW {c}i[ j t jl(lt)ijdﬂ(t)]-ij

i=1 j=1 0

1 P
< Utwdﬂ(t)J %.vi XP
0 1 Vi

i=1 ]

[HX?, = iwi {Zc;i{jt“at)‘idu(t)ij}

[

1 P
W
<sup—=. jt‘“”’dy(t) Zvi.xi"
v :
0 i=1

n

1 p
W
=sup™. Jrrrdu | 147,
0

n

These prove the right hand side of the inequality. Further, we are going to prove the left
hand side of the inequality.

Let 0< 8 < 1, Xy = ()" ¥P)=9 and £ (0]). It is clear that {x, e . Since
p

0<v, <1 forevery ne V, then {x,}el,(v). Take o and N such that

-2/p
(1+£J >1+¢,
a

1 1
jrwdu(t) > (1—5)J.t_]/pd,u(t), n>N, and

a/n 0

Zwk xp > (@1- S)Zwk X/,
k=N k1

then
n 1
(H), =D Ck”l{jt“ (- dﬂ(t)]xk
k=1 0
1
z(l—g)zxn.jrﬂpdﬂ(t), n>N.
0
Hence
1
wyP (Hx), > (1—8)2wn”pxn.jt*”pdy(t), n>N.
0
Further,
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|Hx|| an (Hx)?

n=1

p
> (1— gZp[It l/pdy(t)J > woxf

1
> (1—¢)2P*L, jt—Vpdy(t) > woxf
0

n=1
p

o0

> (1—g)2PH, It VPdu) Z‘\’/"—”vnxrﬁ’

n=1 N

0

|nf g)" U _J/pdﬂ(t)j |x||

These implies

p
[P , > inf 0 [jtﬂpdﬂ(t)} P

If in the Theorem 2.4, we take Yn ="Wn for every n, then we get the following
corollaries.

Corollary 2.5 If the Hausdorff matrix H () maps the space |,(w) into itself, then

1
[H],., = [t**duct)
0

Corollary 2.6 Let 1< p,q<o be such that 1+£:1. If the matrices C(a),

P qQ
H, (@), and G(a) map the space |, (w) into itself, then

_T(a+Dra)
”C(a)”w p - F(Ol +]7/q) a > O

1
1 a-1
IHo(@)],, , =—— [t**|logt|""dt,  a>0
P F(a)-!

6], :%, ap>1.
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Let w= {wn} be a monoton decreasing sequence of positive real numbers such that

o0
lim w, =0 and an =oo. We define

n—o0
n=1

d(w, p) = {x ={x}: Zwlwn (x:)p < oo}

where {x;} is a monoton decreasing sequence found by rearranging the sequence ﬂxn|}.

It can be proved that d(w, p) is a space that its members are all finite sequences.
Further, d(w, p) is an F-normed space with respect to

*

X

”X”d(w, p) = 1" w,p

Lemma 2.7 Let p>1and A= (ai,j) be the operator on d(w, p) that satisfies
() aj ;=0 foreveryi, j,and
m n
(i) Z Z aj j sz Z aj,j for every subset M,K <V that consists of
ieM jeK i=1 j=1
m,n elements, respectively.
Then for every non negative elemen x e d(w, p), we have

[AX g, py < HAX*Hd(w, p)

Proof: See Lashkaripour R. [2002].
Lemma 2.8 Let p>1 and A=(aij) be an operator from d(w, p) into itself such that
a; >0 forevery iand j. If for every x e d(w, p),

t
AX :(Z aijxjj
j=1

then the following statements are equivalent.
(@ yp=Yyp=..20 whenever x; >xp >...20.

n
(b) r, = Z a; Is a sequence such that r,,,,, <r, forevery n.
j=1

60



Berkala MIPA, 23(1), Januari 2013

Proof:
(@)= (b): Let xed(w,p) be an arbitrary, then x=(xq,X,...,Xn,0,0,...) for some
neN.If g, =(0,...010,0,..), that is a sequence with the k™ -coordinate is equal to 1

n
and the others are 0, then x = Zxk e . Further, by the hypothesis we have
k=1

0<y, = Vi = Z(aij —4.);)%;
1 _

(0)= (@) 1t x€dW, P) then x = (%, X2,..., X,0,0,...) for some ne V. For any i,

we have

Z:a,J [ = liaX +( riyl)x2 +...+(ri1n —ri,n_l)xn

= ri,l(XZ - X1)+ ri,z(x3 - Xz)"‘ Tt i (Xn - Xn—l)‘

P 2>V >
Hence, Yi = Yi+1 20 whenever X| > Xp >...20.

Let H(x) be a Hausdorff matrix such that > > a, <> > a; for any subset
ieM jeK i=Z1  j=1

M, K < vV, which consist of m,n elements, respectively. Following Lemma 2.7 and
Lemma 2.8, then for any non negative decreasing sequence x we have

”HX”d(W, p) = ”HX”W, p

Further, by using Theorem 2.4, we have the following theorems.

Theorem 29 Let p>1 and H(x) be a Hausdorff matrix operator such that

Z Z Z Z a; for any subsets M,K < /V, which consist of m,n

ieM jeK i=1 j=1
elements, respectively. Then H(x) maps d(w, p) into itself and

1
[l py = | T Pap)
0

Theorem 2.10 Let A=(aij) be a matrix that satisfies the conditions (i) and (ii) in

Lemma 2.7 and Zwi a,, be convergent. If {v,} is a sequence such that
i=1
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Sn
SUPp— <o
n

n el n
where S = Zsk, S, = Zwk 3y, ,and V, =ka , then A is a bounded linear operator
k=1 k=1 k=1

from d(v,1) into d(w,1) and

S
”A”v,w,l = Supﬁ .

S
Proof: Let X € 4(V:) pe sequence such that x, > x, >..>0. If M = supv—”, then

n
|AX],.. = ZWi Zai'jxj = Zijj
-1 =1 =1
= ZSJ (Xj - Xj+1)S M ZVJ' (Xj - Xj+1)
j=1 =t

Since

o0 o0
Xy = vixj = 2 Vilxj —xjua)
j=1 j=1

then

[Axlyq <M, 5

This implies A, <M.

Further, by letting Xy =Xy =...=X, =1 and X,k =0 for every k e /V, then
we have
[, =V, and |, =S,
SO’ ”A”V,W,l =M.
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3. Concluding Remarks

In this paper, we have succesfully constructed the sequence spaces I¢(v) and d(v,¢),

which is an F-space, respectively. Further, d(v,¢) is a sequence space where all of its
elements are finite sequences. By restricting the function ¢ of the form

#(t) =[], 1< p <o, then we can formulate the upper bound and norm of certain
matrix operator on | (v) and d(v, p) . The works will be continued for matrix operators
acton ly(v) and d(v,¢).
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