Pem etaan daerah kerawanan penyakit leptospirosis melalui metode geographically weighted zero inflated poisson regression

https://doi.org/10.22146/bkm.35050

Agus Salim Arsyad(1*), Hari Kusnanto(2)

(1) Departemen Biostatistik, Epidemiologi dan Kesehatan Populasi, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada
(2) Departemen Biostatistik, Epidemiologi dan Kesehatan Populasi, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Mapping leptospirosis vulnerable areas through a geographically weighted zero-inflated poisson regression

Purpose: Gunung Kidul Health Office reported an increase of leptospirosis cases in 2017. There are many zero values in the data count, so the mean and variance values must not be met. Zero-Inflated Poisson regression is used for modeling data counts that are mostly zero. The study aims to map leptospirosis vulnerable areas.

Method: A total of 144 villages were analyzed. The independent variables were percentages in paddy fields, residential land, settlement distance to rivers, population density, soil texture, altitude, and rainfall. The dependent variable was the number of leptospirosis cases in each village from 2011 to 2017.

Results: The average of leptospirosis cases was 0.6 and the variance was 3.4. Observation data with value of zero was 81%. The Geographically Weighted Zero-Inflated Poisson Regression test was better than Zero-Inflated Poisson multivariate regression in mapping of leptospirosis vulnerable areas. The model brought up local variables in the percentage of paddy fields, percentage of residential land, percentage of settlement distance to river, place height, and rainfall and global variables in the form of population density and soil texture (R-Square = 55.9%). This vulnerability modeling was appropriate based on disease distribution and level of vulnerability. Only 5.5% of leptospirosis cases in the area were not vulnerable.

Conclusion: The sentinel leptospirosis surveillance system should be applied in areas prone to early detection of leptospirosis cases.


Keywords


leptospirosis; mapping; vulnerability; count data; Geographically Weighted Zero Infl ated Poisson Regression

Full Text:

PDF


References

  1. Anonim. Pedoman aplikasi hard skill one health: bab manajemen penyakit infeksi. Indohun National Coordinating Office, 2014.
  2. Sumanta H, Wibawa T, Hadisusanto S, Nuryati A, Kusnanto H. Spatial Analysis of Leptospira in Rats, Water and Soil in Bantul District Yogyakarta Indonesia. Open Journal of Epidemiology. 2015;05(01): 22–31.
  3. Jha S, Ansari MK. Leptospirosis presenting as acute meningoencephalitis. Journal of infection in developing countries. 2010;4(3): 179–182.
  4. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, et al. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS neglected tropical diseases. 2015;9(9): e0003898.
  5. Anonim. Leptospirosis situation in the WHO South-East Asia region. World Health Organization, 2009.
  6. Direktorat Pengendalian Penyakit Dan. Buku Pedoman Penyelidikan dan Penanggulangan Kejadian Luar Biasa Penyakit Menular dan Keracunan Pangan. Kementerian Kesehatan; 2011.
  7. Widayani P. Pemodelan Spasial Kerentanan Wilayah Terhadap Penyakit Menular Terkait Lingkungan Berbasis Penginderaan Jauh (Kasus Malaria, Leptospirosis dan Tuberkulosis di Sebagian Wilayah Provinsi Jawa Tengah dan DIY). [Doktoral] Universitas Gadjah Mada; 2016.
  8. Widayani P, Gunawan T, Danoedoro P, Mardihusodo SJ. Application of Geographically Weighted Regression for Vulnerable Area Mapping of Leptospirosis in Bantul District. The Indonesian journal of geography. 2017;48(2): 168.
  9. Purhadi, Purhadi, Dewi YS, Amaliana L. Zero Inflated Poisson and Geographically Weighted Zero- Inflated Poisson Regression Model: Application to Elephantiasis (Filariasis) Counts Data. Journal of Mathematics and Statistics. 2015;11(2): 52–60.
  10. Vedhagiri K, Natarajaseenivasan K, Prabhakaran SG, Selvin J, Narayanan R, Shouche YS, et al. Characterization of leptospira borgpetersenii isolates from field rats (rattus norvegicus) by 16s rrna and lipl32 gene sequencing. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology]. 2010;41(1): 150–157.
  11. Fadzlina AS, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Serdang UPM, Selangor. Detection of PLC- From Testis of Rattus Argentiventer(RiceField Rat) Using RT-PCR and qRT-PCR. IOSR Journal of Pharmacy and Biological Sciences. 2013;8(3): 65–74.
  12. Sumanta H, Sutopo M, N. K, Subagiyo N. Kajian Faktor Risiko Penyakit Leptospirosis di Kabupaten Gunung Kidul Tahun 2017. BBTKLP2 Yogyakarta, 2017.
  13. Isfandyari A. Laporan Penyelidikan Peningkatan Kasus Leptospirosis di Kabupaten Gunung Kidul Provinsi Daerah Istimewa Yogyakarta Tahun 2017. [Master] Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan Universitas Gadjah Mada; 2017.
  14. Rejeki DSS, Nurlaela S, Octaviana D. Pemetaan dan Analisis Faktor Risiko Leptospirosis. Kesmas: National Public Health Journal. 2013; 179.
  15. Robertson C, Nelson TA, Stephen C. Spatial epidemiology of suspected clinical leptospirosis in Sri Lanka. Epidemiology and infection. 2012;140(4): 731–743.
  16. Ferreira MC, Ferreira MFM. Influence of Topographic and Hydrographic Factors on The Spatial Distribution of Leptospirosis Disease in São Paulo County, Brazil: An Approach Using Geospatial Techniques and Gis Analysis. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. 2016;
  17. Lau CL, Watson CH, Lowry JH, David MC, Craig SB, Wynwood SJ, et al. Human Leptospirosis Infection in Fiji: An Eco-epidemiological Approach to Identifying Risk Factors and Environmental Drivers for Transmission. PLoS neglected tropical diseases. 2016;10(1): e0004405.
  18. Schneider MC, Nájera P, Aldighieri S, Bacallao J, Soto A, Marquiño W, et al. Leptospirosis outbreaks in Nicaragua: identifying critical areas and exploring drivers for evidence-based planning. International journal of environmental research and public health. 2012;9(11): 3883–3910.
  19. AssunçãoOliveira MA, AparecidaLeal É, AssunçãoCorreia M, Filho JC, SouzaDias R, CarlosSerufo J. Human leptospirosis: occurrence of serovars of Leptospira spp. in the state of Minas Gerais, Brazil, from 2008 to 2012. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology]. 2017;48(3).
  20. Vega-Corredor M, Opadeyi J. Hydrology and public health: linking human leptospirosis and local hydrological dynamics in Trinidad, West Indies. Earth Perspectives. 2014;1(1): 3.
  21. Henry RA, Johnson RC. Distribution of the genus Leptospira in soil and water. Applied and environmental microbiology. 1978;35(3).
  22. Saito M, Villanueva SYAM, Chakraborty A, Miyahara S, Segawa T, Asoh T, et al. Comparative analysis of Leptospira strains isolated from environmental soil and water in the Philippines and Japan. Applied and environmental microbiology. 2013;79(2): 601–609.
  23. Rood EJJ, Goris MGA, Pijnacker R, Bakker MI, Hartskeerl RA. Environmental risk of leptospirosis infections in the Netherlands: Spatial modelling of environmental risk factors of leptospirosis in the Netherlands. PloS one. 2017;12(10): e0186987.
  24. Rahmawati. Analisis Spasial Kejadian Luar Biasa (KLB) Kasus Leptospirosis di Kabupaten Kulonprogo Tahun 2011. BALABA. 2013;9(2).
  25. Cheng EMY, Atkinson PM, Shahani AK. Elucidating the spatially varying relation between cervical cancer and socio-economic conditions in England. International journal of health geographics. 2011;10: 51



DOI: https://doi.org/10.22146/bkm.35050

Article Metrics

Abstract views : 319 | views : 270

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Berita Kedokteran Masyarakat

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Berita Kedokteran Masyarakat ISSN 0215-1936 (PRINT), ISSN: 2614-8412 (ONLINE).

Indexed by:


Web
Analytics Visitor Counter