Korelasi kadar HbA1c dengan parameter elektrodiagnostik neuropati otonom diabetikum

https://doi.org/10.22146/bns.v19i3.73900

Isnaini Ashar(1*), Yudiyanta Yudiyanta(2), Ahmad Asmedi(3)

(1) Department of Neurology, Pringsewu Hospital, Lampung
(2) Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta
(3) Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


Diabetic autonomic neuropathy (DAN) is a frequent complication of diabetes mellitus (DM). Serious consequences of DAN are diabetic ulcer and silent myocardial infarction, both can be assessed by examining the sympathetic skin response (SSR) and the R-R interval. The progression of DAN increases the complications and this condition is influenced by glycemic control (HbA1c). The aim of this study was to find the correlation between HbA1c levels and SSR and R-R intervals. This was a cross-sectional study. The HbA1c levels, SSR latency and amplitude and R-R interval at lower extremities in DM patients were assessed. The correlation between HbA1c levels, demographic and laboratory variables with SSR latency, SSR amplitude, and R-R interval were tested with Pearson/Spearman correlation test followed by linear regression test.
There were 41 subjects, whose mean levels HbA1c, SSR latency, SSR amplitude, and R-R interval ratio were 8.7±3.02%, 2586.58±778.69 ms, 0.51±0.61 mV, 0.96±0.28, respectively. Significant bivariate correlations were found between HbA1c with SSR latency (r =0.312; p =0.047), HbA1c with R-R interval ratio (r =-0.392; p =0.011), duration of DM with SSR latency (r =0.524; p
=0.000), duration of DM with SSR amplitude (r =-0.444; p =0.003), and duration of DM with interval R-R ratio (r =-0.320; p =0.041). In the multivariate test, duration of DM correlated with SSR latency (β =0.417; p =0.008) and SSR amplitude (β =-0.351; p =0.021), HbA1c with SSR latency (β =0.175; p =0.248) and HbA1c with the R-R interval ratio (β =-0.298; p =0.063). In conclusion, both of HbA1c and duration of DM were positively correlated with SSR latency, and negatively correlated with the R-R interval.


ABSTRAK

Neuropati otonom diabetikum merupakan komplikasi diabetes melitus (DM) cukup sering. Komplikasi neuropati otonom diabetikum yang cukup serius adalah ulkus diabetikum dan silent myocard infarction. Risiko kedua komplikasi tersebut dapat dinilai dengan pemeriksaan sympathetic skin response (SSR) dan interval R-R. Progresivitas neuropati otonom diabetikum meningkatkan komplikasi dan hal itu dipengaruhi oleh kontrol glikemik (HbA1c). Penelitian ini bertujuan menentukan korelasi antara kadar HbA1c dengan SSR dan interval R-R.
Penelitian ini merupakan penelitian potong lintang. Subjek tersebut dilakukan pemeriksaan kadar HbA1c, pemeriksaan latensi dan amplitudo SSR ekstremitas bawah serta interval R-R. Korelasi antara kadar HbA1c, variabel demografi dan laboratorium dengan latensi SSR, amplitudo SSR dan interval R-R dengan uji korelasi Pearson/Spearman dilanjutkan uji regresi linier.
Didapatkan 41 subjek dengan rerata kadar HbA1c 8,7±3,02 %, latensi SSR 2586,58±778,69 ms, amplitudo SSR 0,51±0,61 mV, dan rasio interval R-R 0,96±0,28. Hasil uji korelasi bivariat yang signifikan adalah HbA1c dengan latensi SSR (r =0,312; p =0,047), HbA1c dengan rasio interval R-R (r =-0,392; p =0,011), durasi DM dengan latensi SSR (r =0,524; p =0,000), durasi DM dengan amplitudo SSR (r =-0,447; p =0,003) dan durasi DM dengan rasio interval R-R (r
=-0,320; p =0,041.) Pada uji multivariat, durasi DM berkorelasi signifikan dengan latensi SSR (β =0,417; p =0,008) dan amplitudo SSR (β =-0,351; p =0,021), untuk HbA1c dengan latensi SSR (β =0,175; p =0,248) dan untuk HbA1c dengan rasio interval R-R (β =-0,298; p =0,063). Kesimpulan penelitian ini, HbA1c dan durasi DM berkorelasi positif dengan latensi SSR dan berkorelasi negatif dengan interval R-R.


Keywords


HbA1c, sympathetic skin response, interval R-R, neuropati otonom diabetikum

Full Text:

PDF


References

Verotti A, Prozioso G, Scattoni R, Chiarelli F. Autonomic neuropathy in diabetes mellitus. Frontiers in Endocrinology. 2014;205(5):1-7.

Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Busui RP, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes/Metabolism Research and Reviews. 2011;27(7):639- 653.

Vinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation, and cardiovascular disease. Journal of Diabetes Investigation. 2013;4(1):1-15.

Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World Journal of Diabetes. 2014;5(1):17-39.

Manjula SR, Viwasbharathi N, Siddhartha K, Neeraja, Sudhakar

K. Study of clinical evaluation of autonomic dysfunction in type 2 DM. Journal of Pharmacy and Biological Sciences. 2015;10(1):55-61.

Karayannis G, Gamouzis G, Cokkinos DV, Skoularigis J, Triposkiadis F. Diabetic cardiovascular autonomic neuropathy: clinical implications. Expert Review Cardiovascular. 2012;10(6):747-765.

Busui RP, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136- 154.

Braffett BH, Wessells H, Sarma AV. Urogenital autonomic dysfunction in diabetes. Current Diabetes Reports. 2016;16(12):119.

Bowling RL, Rashid ST, Boulton AJM. Preventing and treating foot complications associated with diabetes mellitus. Nature Reviews Endocrinology. 2015;11(10):606.

Argiana V, Eleftheriadou I, Tentolouris N. Screening for the high-risk foot of ulceration: tests of somatic and autonomic nerve function. Current Diabetes Reports. 2011;11(4):294-301.

Rebrina SV, Barada A, Duvnjak S. Diabetic autonomic neuropathy. Diabetologia Croatica. 2013;42(3):73-79.

Reddy SA, Sachan A, Srinivasa RP, Mohan A. Clinical applications of glycosylated hemoglobin. The Journal of Clinical and Scientific Research. 2012;2(1):22-33.

Gallagher EJ, Roith DL, Bloomgarden Z. Review of hemoglobin A1c in the management of diabetes. Journal of Diabetes. 2009;1(1):9-17.

Hsiao JY, Tien KJ, Hsiao CT, Weng HH, Chung TC, Hsieh MC. The relationship between diabetic autonomic neuropathy and diabetic risk factors in a Taiwanese population. The Journal of International Medical Research. 2011;39(4):1155-1162.

Tarvainen MP, Laitinen TP, Lipponen JA, Cornforth DJ, Jelinek HF. Cardiac autonomic dysfunction in type 2 diabetes

– effect of hyperglycemia and disease duration. Frontiers in Endocrinology.2014;130(5):1-10.

Jun JE, Jin SM, Baek J, Oh S, Hur KY, Lee MS, et al. The association between glycemic variability and diabetic cardiovascular autonomic neuropathy in patients with type 2 diabetes. Cardiovascular Diabetology. 2015;14(1):70.

Pop-Busui R. Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care. 2010;33(2):434-441.

Kucera P, Goldenberg Z, Kurca E. Sympathetic skin response: review of the method and its clinical use. Bratislavske Lekarske Listy. 2004;105(3):108-116.

Draghici AE, Taylor JA. The physiological basis and measurement of heart rate variability in humans. Journal of the Japan Society of Physiological Anthropology. 2016;35(1):22-39.

Al-Moallem MA, Zaidan RM, Alkali NH. The sympathetic skin response in diabetic neuropathy its relationship to autonomic symptoms. Saudi Medical Journal. 2008;29(4):568-572.

Singh R, Pawar S, Bari A, Jain J. Role of sympathetic skin response in early diagnosis of diabetic neuropathy -a case-control study in rural population of Central India. Journal of Datta Meghe Institute of Medical Science University. 2012;7(2):115-118.

Luo KR, Chao CC, Hsieh PC, Lue JH, Hsieh ST. Effect of glycemic control on sudomotor denervation in type 2 diabetes. Diabetes Care. 2012;35(3):612-616.

Madonna R, Caterina RD. Cellular and molecular mechanisms of vascular injury in diabetes: Pathways of vascular disease in diabetes. Vascular Pharmacology. 2011;54(3-6):68-74.

Yagihashi S, Sima AAF. Diabetic autonomic neuropathy in BB rat: ultrastructural and morphometric changes in parasympathetic nerves. Diabetes. 1986;35(7):733-743.

Valensi P, Paries J, Attatli JR. Cardiac autonomic neuropathy in diabetic patients: influence of diabetes duration, obesity, and microangiopathic complications—The French Multicenter Study. Metabolism. 2003;52(7):815-820.

Wu S, He R, Xiong K. Detrimental impact of hyperlipidemia on the peripheral nervous system. Neural Regeneration Research. 2012;7(5):392–399.

Zoungas S, Woodward M, Li Q, Cooper ME, Hamet P, Harrap S, et al. Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes. Diabetologia. 2014;57(12):2465-2574.

Krishna BH, Reddy M, Singh SB, Kala S, Kumar K, Uma H, et al. Cardiovascular autonomic neuropathy in diabetics: Correlation with duration of diabetes. Biomedical Research. 2014;25(3):307-310.

Docherty JR. Age-related changes in adrenergic neuroeffector

transmission. Autonomic Neuroscience. 2002;96(1):8-12.

El-Salem K, Ammari F, Khader Y, Dhaimat O. Elevated glycosylated hemoglobin is associated with subclinical neuropathy in neurologically asymptomatic diabetic patients: a prospective study. Journal of Clinical Neurophysiology. 2009;26(1):50-53.



DOI: https://doi.org/10.22146/bns.v19i3.73900

Article Metrics

Abstract views : 290 | views : 311

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Berkala NeuroSains

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.