PENGARUH PEMBERIAN Bacillus sp. TERHADAP KINERJA PERTUMBUHAN, KADAR LEMAK, DAN KOLESTEROL DAGING AYAM BROILER

Muhammad Ichsan

INTISARI

Penelitian bertujuan untuk mengetahui pengaruh pemberian Bacillus sp. terhadap laju pertumbuhan, kadar lemak, dan kolesterol daging serta populasi E. coli dalam usus halus. Materi ternak yang digunakan adalah ayam strain Arbor Acres CP 707 in sex umur sehari sebanyak 200 ekor. Ayam tersebut dibagi menjadi 4 kelompok perlakuan dengan 5 ulangan, sehingga masing-masing ulangan menggunakan 10 ekor ayam. Perlakuan I tidak diberi Bacillus sp., perlakuan II diberi Bacillus sp. dengan dosis 3 cc per liter air minum selama 1 hari per minggu, perlakuan III diberi Bacillus sp. dengan dosis 3 cc per liter air minum selama 3 hari per minggu, dan perlakuan IV diberi Bacillus sp. dengan dosis 3 cc per liter air minum selama 6 hari per minggu. Selama penelitian, pakan dan air minum diberikan secara ad libitum. Hasil penelitian menunjukkan bahwa pemberian Bacillus sp. tidak memberikan pengaruh yang nyata (P>0,05) terhadap konsumsi pakan, bobot badan, pertambahan bobot badan, konversi pakan, bobot karkas, bobot lemak abdominal, dan bobot potongan primal karkas, namun berpengaruh sangat nyata (P<0,01) terhadap penurunan kadar lemak dan kolesterol daging serta populasi E. coli dalam usus halus.

(Kata kunci : Bacillus sp., Pertumbuhan, Lemak, Kolesterol, dan E. coli).

Buletin Peternakan 28 (3) : 96 - 103, 2004

Fakultas Peternakan, Universitas Mataram.

96
THE EFFECT OF Bacillus sp. APPLICATION ON THE GROWTH RATE, FAT, AND CHOLESTEROL CONTENT OF BROILER CHICKEN MEAT

ABSTRACT

An experiment to find out the effect of Bacillus sp. application on growth rate, fat and cholesterol content of meat and population of E. coli in intestine, had been conducted with 200 day old chickens Arbor Acres strain CP 707 un sexed. Those chickens are divided into 4 group of treatments with 5 replications, so each replication consisted of 10 chickens. There was no Bacillus sp. applied for Treatment I, while in treatment II, III and IV, a dose of 3 cc Bacillus sp. was added per litter of drinking water, and provided for one day, 3 days and 6 days in a week respectively. Drinking water was provided ad libitum during experiment. The results showed that the addition of Bacillus sp. in drinking water did not affect significantly (P>0.05) on feed consumption, body weight, body weight gain, feed conversion, carcass weight, abdominal fat weight and carcass primal cut weight, but reduced significantly (P<0.01) fat and cholesterol content of meat and population of E. coli in intestine.

(Key words: Bacillus sp. growth, Fat, Cholesterol, and E. coli).

Pendahuluan

Penyusun pakan unggas lebih banyak menggunakan limbah industri dan pertanian yang merupakan salah satu bahan yang memiliki harga relatif rendah, tidak bersaing dengan kebutuhan manusia, namun memiliki nilai gizi yang cukup tinggi. Kelemahannya adalah nilai kecukupannya relatif rendah terutama bila dibandingkan dengan bahan pakan asal hewan, sementara ternak unggas memiliki keterbatasan mencerna bahan ransum berserat kasar tinggi, sehingga pakan tidak dapat dimanfaatkan secara optimal untuk keperluan produksi.

Akhir-akhir ini di bidang teknologi pakan, telah ditemukan suatu terobosan bioteknologi, yaitu telah ditemukannya probiotik sebagai upaya memperbesar peran mikroflora usus, baik yang berasal dari mikroba hidup sejenis, beberapa jenis, bahkan kombinasi antara bakteri, kapang atau khamir. Beberapa keuntungan yang dapat diperoleh dengan penggunaan probiotik pada unggas adalah: 1) meningkatkan aktivitas enzim pencernaan seperti lipase, amilase dan protease, sehingga mampu meningkatkan zat-zat makanan untuk keperluan produksi daging atau telur (Sjoefjan, 2003); 2) dapat menurunkan pH usus halus dan selanjutnya akan menekan pertumbuhan mikroba yang merugikan, seperti E. coli dan Salmonella sp. (Jin et al., 1996), dan mendesak keluar dari ekosistem saluran pencernaan dan menggantikan lokasi mikroba merugikan tersebut (Soeharsono, 1998); 3) probiotik dapat menurunkan kadar kolesterol (serum darah, daging dan kuning telur), dapat menghambat pembentukan gas amonia serta mengurangi urease yang diproduksi oleh mikroba dalam lumen alat saluran pencernaan (Isshiki, 1979; Jerningan dan Miles, 1985; Turtuero dan Fernandez, 1995; Chiang dan Hsieh, 1995; Abdurrahim, et al., 1996; Kompiang, 1999; dan Sjoefjan, 2003).

Salah satu jenis probiotik dari unsur bakteri adalah Bacillus sp. Bakteri ini telah terbukti cukup baik sebagai penghasil protease dan lipase, serta memiliki pertumbuhan cukup cepat, dan dalam kondisi normal secara alami sudah ada dalam saluran pencernaan unggas (Sjoefjan, 2003). Hasil penelitian menggunakan Bacillus sp. sebagai probiotik pada ayam petelur dengan menggunakan bahan pakan lokal (menyusun sendiri) dapat menggantikan fungsi antibiotik (virginiamycine), bahkan diprediksi dapat berfungsi sebagai egg-promotor (Kompiang, 1999), dapat meningkatkan
mikroflora menguntungkan dan menekan mikroflora merugikan, meningkatkan daya serap zat-zat makanan dan meningkatkan produksi telur (Sjofjan, 2003). Bagaimana halnya bila probiotik Bacillus sp., diuji cobaakan pada ternak yang menggunakan pakan komersil dengan kualitas yang telah terujii. Diperlukan penelitian untuk menjawabnya, sehingga hasil penelitian ini dapat dipakai oleh peternak ayam broiler sebagai pedoman untuk meningkatkan kualitas dan kuantitas daging yang dihasilkan.

Materi dan Metode

Penelitian ini dirancang dengan rancangan Acak Lengkap Pola Searah, menggunakan 200 ekor anak ayam umur sehari strain Arbor Acres CP 707 un sex. Anak ayam tersebut dibagi menjadi 4 kelompok perlakuan masing-masing dengan 5 ulangan, sehingga masing-masing ulangan menggunakan 10 ekor ayam. Perlakuan I tidak diberi Bacillus sp., perlakuan II diberi Bacillus sp. dengan dosis 3 cc per liter air minum selama 1 hari per minggu, perlakuan III diberi Bacillus sp dengan dosis 3 cc per liter air minum selama 3 hari per minggu, dan perlakuan IV diberi Bacillus sp. dengan dosis 3 cc per liter air minum selama 6 hari per minggu.

Masing-masing kelompok ayam di masing-masing ulangan dipelihara dalam 1 petak kandang berlantai liter dengan ukuran 2 meter persegi, dengan pakan dan air minum diberi ad libitum. Jenis pakan yang dipergunakan adalah pakan komersil produksi PT. Japfa Comfeed Indonesia. Variabel yang diamati adalah konsumsi pakan, pertambahan bobot badan, bobot badan akhir (bobot potong), konversi pakan, bobot karkas, bobot lemak abdominal, bobot potongan primak karkas, kadar lemak, dan kolesterol daging serta populasi E. coli dalam usus halus.

Di akhir penelitian (umur 6 minggu), di setiap ulangan diselihilah 1 ekor untuk mendapatkan data bobot karkas, bobot lemak abdominal, bobot potongan primak karkas, kadar lemak dan kolesterol daging serta populasi E. coli dalam usus halus. Kadar kolesterol daging diuji menggunakan metode Spektrofotometer (Alexander dan Joan, 1993), sedangkan kadar lemak daging diuji menggunakan metode Atkinson et al. (1972), sedangkan populasi mikroba dan E. Coli dalam usus halus dihitung menggunakan metode Angka Lempeng Total (Bibiana, 1994).

Semua data yang diperoleh dianalisa menggunakan analisa varian dan uji lanjut LSD (Stell and Torrie, 1991).

Hasil dan Pembahasan

Rata-rata konsumsi pakan, bobot badan akhir (bobot potong), pertambahan bobot badan, konversi pakan, bobot karkas, dan potongan primak karkas sebagai pengaruh dari pemberian Bacillus sp. disajikan pada Tabel 1.

Data pada Tabel 1 menunjukkan bahwa pemberian Bacillus sp. dengan dosis 3 cc per liter air minum tidak mempengaruhi (P>0.05) konsumsi pakan, bobot potong, pertambahan bobot badan, konversi pakan, bobot karkas dan potongan primak karkas. Penggunaan probiotik untuk meningkatkan pertumbuhan dan produksi telur pada ternak unggas didasarkan pada kemampuan dari probiotik untuk memacu kinerja berbagai enzim (lipase, amilase, dan protease) sehingga dapat meningkatkan kecermanan pakan (Isshiki, 1979; Jernigan and Miles, 1985; Turtuero dan Fernandez, 1995; Chiang dan Hsieh, 1995; Abdurrahim, et al., 1996; Jin et al., 1996; Kompiang, 1999; Sjofjan, 2003). Pada keadaan nutrien yang tersedia dari ransum yang diberikan tercukupi, semua mikroba akan tumbuh secara optimal dan pembentukan produk metabolit yang dibutuhkan dalam proses metabolisme berjalan secara normal, dan dalam kondisi ini probiotik Bacillus sp. yang dikatakan mampu bersporulasi pada lingkungan yang terbatas tidak akan berpengaruh terhadap pembentukan produk metabolit terutama senyawa yang dibutuhkan untuk proses katabolisme.

Dalam penelitian ini, semua ayam perlakuan diberikan pakan yang sama, yaitu pakan komersil produksi PT. Japfa Comfeed Indonesia, yang berarti bahwa zat-zat makanan yang terkonsumsi oleh ayam di masing-masing perlakuan adalah sama, serta kebutuhan akan nutrien dapat terpenuhi dari ransum yang...

Pada kondisi faktor-faktor lain yang berpengaruh terhadap konsumsi pakan telah diseragamkan dan kondisi nutrien untuk pertumbuhan mikroba dan pembentukan produk-produk metabolit terpenuhi secara maksimal pada semua perlakuan maka pemberian probiotik Bacillus sp. tidak akan berpengaruh terhadap konsumsi pakan, laju pertumbuhan, konversi pakan, dan bobot karkas, serta persentase bobot potongan primal karkas.

Pengaruh pemberian Bacillus sp. terhadap tingkat perlemakan daging ayam broiler disajikan pada Tabel 2.

Tabel 1. Pengaruh pemberian Bacillus sp. terhadap konsumsi pakan, bobot badan akhir (bobot potong), pertambahan bobot badan, konversi pakan, bobot karkas, dan potongan primal karkas ayam broiler selama 6 minggu peminjamanan (The effect of Bacillus sp. supply on feed consumption, final body weight (slaughter weight) average daily gain, feed conversion,carcass weight, and carcass primal of broiler chicken during 6 months breeding)

<table>
<thead>
<tr>
<th>Peubah (Variables)</th>
<th>Pemberian Bacillus sp. (hari/minggu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Frequency of Bacillus sp. supply (day/week))</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Konsumsi pakan (g/ekor)</td>
<td>3278,54</td>
</tr>
<tr>
<td>(Feed consumption) (g/bird)</td>
<td></td>
</tr>
<tr>
<td>Bobot akhir (g/ekor)</td>
<td>2140,35</td>
</tr>
<tr>
<td>(Final weight) (g/bird)</td>
<td></td>
</tr>
<tr>
<td>Pertambahan bobot badan (g/ekor)</td>
<td>2086,10</td>
</tr>
<tr>
<td>(Weight gain) (g/bird)</td>
<td></td>
</tr>
<tr>
<td>Konversi pakan (Feed conversion ratio)</td>
<td>1,90</td>
</tr>
<tr>
<td>Bobot karkas (Carcass weight) (%)</td>
<td>78,08</td>
</tr>
<tr>
<td>Potongan primal karkas (Carcass primal cut)</td>
<td></td>
</tr>
<tr>
<td>- Paha atas (Thigh) (%)</td>
<td>14,10</td>
</tr>
<tr>
<td>- Punggung (Back) (%)</td>
<td>28,30</td>
</tr>
<tr>
<td>- Paha bawah (Drum stick) (%)</td>
<td>14,90</td>
</tr>
<tr>
<td>- Dada (Breast) (%)</td>
<td>29,20</td>
</tr>
<tr>
<td>- Sayap (Wing) (%)</td>
<td>10,80</td>
</tr>
</tbody>
</table>
Data pada Tabel 2 menunjukkan bahwa pemberian Bacillus sp., melalui air minum berpengaruh sangat nyata (P<0,01) terhadap kadar lemak dan kolesterol daging ayam broiler, namun tidak mempengaruhi (P>0,05) bobot lemak abdominal. Fenomena besarnya pengaruh pemberian Bacillus sp., terhadap laju penurunan kadar kolesterol (Gambar 1) dan lemak daging (Gambar 2) hasil penelitian ini membuktikan pernyataan Soebarsono (1998) yang mengindikasikan bahwa penggunaan probiotik dapat menurunkan kadar lemak dan kolesterol daging.

Terjadinya penurunan kadar lemak daging sebagai pengaruh dari pemberian Bacillus sp. disebabkan oleh karena adanya kemampuan Bacillus sp untuk meningkatkan aktivitas enzim lipase untuk merombak lemak, sehingga kadar lemak daging menurun (Sjofjan, 2003). Bacillus sp. juga memiliki kemampuan untuk meningkatkan intestinal homeostatis yang memungkinkan mekanisme perombakan atau degradasi kolesterol yang dilakukan oleh mikroba intestinal. Perombakan dilakukan dengan cara mengkonversi kolesterol menjadi asam empedu kholat di dalam hati, sehingga kandungan kolesterol daging menurun (Grunewald, 1982 dan Fuller, 1992).

Penelitian pada tikus yang diberi ransum dengan campuran susu fermentasi yang mengandung Lactobacillus acidophilus ternyata terjadi penuruan kandungan kolesterol darah dibandingkan dengan tikus yang hanya diberi ransum dengan penambahan susu skim (Grunewald, 1982). Studi secara invitro menggunakan mikroba Lactobacillus acidophilus juga menunjukkan bahwa terjadi asimilasi kolesterol dari medium kultur. Hal ini disebabkan oleh mikroba tersebut mengikat kolesterol pada lumen intestinal sehingga mengurangi penyerapan untuk peredaran darah (Gilliand et al., 1985) yang dikutip oleh Sjofjan (2003). Lactobacillus sp. mampu memproduksi asam laktat dalam jumlah besar dari karbohidrat sederhana yang berlebihan dari kebutuhan hidup pokok ayam, sehingga dengan adanya asam laktat, pembentukan lemak dalam tubuh dan kolesterol akan berkurang (Jerningan dan Miles, 1985).

Menurunnya kadar kolesterol dan lemak daging sebagai pengaruh dari pemberian Bacillus sp. dalam penelitian ini disamping dapat dilihat dari kadar kolesterol dan lemak daging kelompok ayam tanpa diberi Bacillus sp., juga dapat dilihat dari hasil penelitian terdahulu yang mendapatkan kadar kolesterol ayam broiler berkisar antara 60,4 sampai dengan 64,4 mg/100 g (Swierczewska et al., 1994) dan kadar lemak sebesar 2,3% (Haugan, 1994).

Tabel 2. Pengaruh pemberian Bacillus sp. terhadap tingkat perlemakan dan kolesterol daging ayam broiler (The effect of Bacillus sp. supply on the level of fat and cholesterol of broiler chicken meat)

<table>
<thead>
<tr>
<th>Peubah (Variables)</th>
<th>Pemberian Bacillus sp. (hari/ minggu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Frequency of Bacillus sp. supply (day/week))</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Lemak abdominal</td>
<td></td>
</tr>
<tr>
<td>(Abdominal fat) (%)</td>
<td>1,88</td>
</tr>
<tr>
<td>Lemak daging (Marbling) (%)</td>
<td>2,86 (^{a})</td>
</tr>
<tr>
<td>Kadar kolesterol (Cholesterol) (%)</td>
<td>0,09 (^{a})</td>
</tr>
</tbody>
</table>

\(^{a,b,c}\) Superskrip yang beda pada baris yang sama menunjukkan perbedaan yang nyata \((P<0,05)\) (Different superscript at the same raw indicating significant differences \((P<0.05)\)).
Dari data hasil penelitian ini dapat disimpulkan bahwa pemberian *Bacillus sp.* sebanyak 3 cc per liter air minum selama 3 hari dalam seminggu, mampu menurunkan kadar lemak daging dari 2,86% menjadi 1,56% dan kadar kolesterol dari 0,09% menjadi 0,05%. Oleh sebab itu untuk menghasilkan daging broiler dengan kadar lemak dan kolesterol rendah disarankan untuk menggunakan *Bacillus sp.* lewat air minum sebanyak 3 cc per liter air minum selama 3 hari berturut-turut dalam seminggu.

Data pada Tabel 2 juga menginformasikan bahwa pemberian *Bacillus sp.*, melalui air minum tidak mempengaruhi (P>0,05) persentase lemak abdominal ayam broiler. Peristiwa tidak berpengaruhnya pemberian probiotik *Bacillus sp.* terhadap kadar lemak abdominal memberikan isyarat bahwa aktifitas *Bacillus sp.* hanya mampu mengaktifkan kerja enzim lipase untuk merombak lemak daging, sementara terhadap kandungan lemak abdominal tidak memperlihatkan pengaruh yang nyata.
Tabel 3. Pengaruh pemberian Bacillus sp. terhadap populasi E. coli dalam usus halus
(The effect of Bacillus sp. supply on the population growth of E. coli in intestine)

<table>
<thead>
<tr>
<th>Pemberian Bacillus sp. (hari/minggu)</th>
<th>E. coli (koloni/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Frequency of Bacillus sp. supply (day/week))</td>
<td>(E. coli (colony/g))</td>
</tr>
<tr>
<td>0</td>
<td>218,5 (\times 10^4)</td>
</tr>
<tr>
<td>1 hari/minggu (1 day/week)</td>
<td>56,4 (\times 10^3)</td>
</tr>
<tr>
<td>3 hari/minggu (3 day/week)</td>
<td>16,5 (\times 10^5)</td>
</tr>
<tr>
<td>6 hari/minggu (6 day/week)</td>
<td>1,7 (\times 10^5)</td>
</tr>
</tbody>
</table>

a,b Superskrip yang beda pada kolom yang sama menunjukkan perbedaan yang sangat nyata \((P<0.01)\)
(Different superscript at the same column indicating high significant differences \((P<0.01)\)).

Tingkat populasi E. coli dalam usus halus ayam broiler yang diberi Bacillus sp. disajikan pada Tabel 3.

Data pada Tabel 3 menunjukkan bahwa pemberian Bacillus sp. berpengaruh sangat nyata \((P<0.01)\) terhadap populasi E. coli dalam usus halus ayam broiler. Hal ini mengandung arti bahwa pemberian Bacillus sp. sebesar 3 cc per liter air minum pada ayam broiler dapat mengurangi populasi bakteri E. coli. Menurunnya populasi E. coli ini disebabkan karena Bacillus sp. mampu menurunkan pH usus halus dan menekan pertumbuhan E. coli (Jin et al., 1996).

Pada tahap selanjutnya bakteri E. coli didesak keluar dari ekosistem saluran pencernaan dan menggantikan lokasi mikroba merugikan tersebut (Soeharsono, 1998). Oleh sebab itu untuk tujuan mengurangi populasi bakteri E. coli dalam usus halus ayam broiler dan mengurangi resiko serangan bakteri tersebut disarankan agar dalam pemeliharaan ayam broiler untuk menggunakan Bacillus sp. sebanyak 3 cc per liter air minum dan diberikan selama 3 hari per minggu sepanjang masa pemeliharaan.

Kesimpulan dan Saran

Penelitian ini menyimpulkan bahwa pemberian Bacillus sp. pada ayam broiler tidak mempengaruhi konsumsi pakan, pertambahan bobot badan, bobot potong, konversi pakan, bobot karkas, potongan primal karkas, dan bobot lemak abdominal, namun dapat menurunkan kadar lemak dan kolesterol daging serta populasi E. coli dalam usus halus. Dengan demikian dapat direkomendasikan bahwa untuk menghasilkan daging broiler berlemak dan berkolesterol rendah, serta untuk menekan populasi E. coli dalam usus halus, disarankan untuk memberikan Bacillus sp. melalui air minum dengan dosis 3 cc per liter air minum selama 3 hari dalam seminggu selama pemeliharaan.

Ucapan Terima Kasih

Ucapan terima kasih disampaikan kepada Saudara Alimuddin, S.Pt, atas bantuan mereka selama penelitian berlangsung, semoga semua bantuan tersebut bermakna ibadah di sisi Allah SWT, amien, Allahumma ya amien.

Daftar Pustaka