KECERNAAN GLOBAL FRAKSI NITROGEN UNTUK II BAHAN MAKANAN TERNAK

Kustantinah

INTISARI

Percobaan ini bertujuan untuk menentukan korelasi antara komposisi kimia hijauan pakan, yaitu fraksi nitrogen diinding sel dan kecerceaan global fraksi nitrogen total. Sebanyak 11 hijauan yang mempunyai komposisi kimia berbeda dideterminasi kecerceaan globalnya secara in vivo dengan menggunakan 5 ekor domba. Dari keseluruhan hijauan makanan ternak yang dipelajari rata-rata kecerceaan global semua untuk protein, adalah 70.4% dengan koefisien variasi (KV) yang cukup tinggi 17.5%. Kecerceaan semua protein (nitrogen total) adalah cukup erat hubungannya dengan kadar protein yang bersangkutan \((r = -0.828; n = 11)\), dengan kadar Neutral Detergent Insoluble Nitrogen (NDIN) \((r = -0.758; n = 9)\) ataupun dengan kadar Acid Detergent Insoluble Nitrogen (ADIN) \((r = -0.88; n = 9)\). Dengan percobaan ini pula dinyatakan bahwa penggunaan nitrogen diinding sel di dalam feses sebagai nilai indikator dari nitrogen pakan yang tidak tercerma, dapat digunakan untuk mengestimasikan koefisien kecerceaan global protein pakan ternak yang rata-ratanya adalah 89.1% \((KV = 6.3\%)\) tetapi tidak timbul suatu korelasi dengan proporsi ADIN/Nt \((r = -0.039; n = 9)\) dan proporsi NDIN/Nt \((r = -0.275; n = 9)\).

(Kata kunci: Kecerceaan, hijuan, nitrogen, domba.)

ABSTRACT

The purpose of this trial was to determined the correlation between forage composition, especially nitrogen (N) fraction cell-wall, and its digestibility of total N fraction. Eleven herbages with different chemical composition were determined the in vivo digestibility using five sheep in total collection technique. From all the herbages examined, the average of apparent digestibility of the protein was 70.4 % with coefficient of variability (CV) of 17.5 %. The correlation between apparent digestibility of protein with total N \((r = -0.828; n = 11)\) with NDIN \((r = -0.758; n = 9)\) and with ADIN \((r = 0.688; n = 9)\) were tight. This trial stated that cell wall-N in the fescen, as an indication of undigested-N, can be used to estimate total true digestibility coefficient feed protein. The coefficient value was 89.1 % \((CV = 6.3\%)\), but not correlated with the proportion of ADIN/Nt \((r = -0.039; n = 9)\) and NDIN/Nt \((r = -0.275; n = 9)\).

(Key words: Digestibility, herbage, nitrogen, sheep.)

1 Fakultas Peternakan UGM, Yogyakarta 55281
Pendahuluan

Untuk menguapakan apakah kondisi yang disebutkan di atas dapat terpenuhi, maka dilakukan penelitian berikut ini. Di dalam perbaikan ini diukur kadar nitrogen total (PK), NDIN, ADIN, juga penggunaan pencernaan secara in vivo dari fraksi-fraksi tersebut. Untuk menerapkan penelitian di atas digunakan 11 hijuan pakan dengan mempertimbangkan ketersediaan dan keaneka-

Materi Dan Metode

Sebelum macam hijuan pakan (Tabel 1) dianalisis untuk mengetahui kandungan bahan keringnya (BK), bahan organik (BO), fraksi dinding sel (NDF dan ADF), nitrogen total (PK) dan fraksi nitrogen dinding sel (NDIN dan ADIN) dan juga fraksi nitrogen yarut (NS) di dalam larutan mineral dari Verite dan Demarquilly (1978).

Kecenderungan BK dan komposisi bahan kering lainnya diukur dengan metode in vivo (Demarquilly, 1969). Perbaikan kecenderungan ini dilakukan dengan menggunakan lima ekor domba jantan dewasa jenex Texel. Domba-domba tersebut diletakkan di dalam kandang khusus untuk pengukuran kecenderungan. Pada diberikan secara individu sebanyak dua kali per hari. Kuantitas makanan yang diberikan ditentukan sedemikian rupa supaya kuantitas bahan kering yang tidak dikonsumsi sekitar 10% dari yang disediakan. Selama periode adaptasi makanan yang berlangsung selama tiga minggu, kuantitas makanan yang diberikan, kuantitas makanan yang dikonsumsi dan juga kuantitas total feses yang diproduksi ditimbang untuk setiap domba pada setiap 10 hari secara berturut-turut. Selama periode pengukuran kecenderungan sampel makanan yang diberikan, sampel makanan yang tersisa dan sampel feses harus untuk setiap domba diambil (sekitar 100 atau 200 gram setiap sampel) dan dikeringkan di dalam oven pada suhu 80°C selama 48 jam, kemudian dianalisis.

Hasil Dan Pembahasan

Komposisi Kimia Bahan Pakan

Kadar dinding sel total (NDF) dari 11 hijuan pakan bervarian dari 35% untuk kubis jenis cavalier merah, sampai dengan 68% untuk silase rumpun yang tambah di padang penggembalaan (2) (Tabel 1). Silase rumpun ini dan juga Silase Seige (Ing: Rye), merupakan hijuan yang mengandung kadar ADF paling besar. Kadar PK adalah antara 7,7 sampai 23%. NDIN/NT bervarian dengan kisaran yang lebih besar. Kadar yang paling rendah dideteksi untuk kubis jenis moellers kontrol 15,7%...
TABEL 1. KOMPOSISI KIMIA DARI 11 HIJAUAN MAKANAN TERNAK

<table>
<thead>
<tr>
<th>Hijauan</th>
<th>BK %</th>
<th>BO</th>
<th>NDF</th>
<th>ADF</th>
<th>PK</th>
<th>NDIN</th>
<th>ADIN</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silase jagung 1</td>
<td>29,3</td>
<td>95,9</td>
<td>55,5</td>
<td>21,1</td>
<td>7,7</td>
<td>18,8</td>
<td>6,0</td>
<td>47,5</td>
</tr>
<tr>
<td>Silase jagung 2</td>
<td>21,8</td>
<td>94,6</td>
<td>51,6</td>
<td>24,4</td>
<td>9,7</td>
<td>22,8</td>
<td>8,0</td>
<td>49,6</td>
</tr>
<tr>
<td>Rumput yang tumbuh dipadang</td>
<td>19,4</td>
<td>82,0</td>
<td>51,9</td>
<td>29,6</td>
<td>23,1</td>
<td>44,3</td>
<td>8,3</td>
<td>21,0</td>
</tr>
<tr>
<td>pengembalaan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silase rumput padang</td>
<td>29,2</td>
<td>85,6</td>
<td>61,6</td>
<td>36,7</td>
<td>13,7</td>
<td>30,7</td>
<td>10,8</td>
<td>52,5</td>
</tr>
<tr>
<td>pengembalaan 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silase rumput padang</td>
<td>30,0</td>
<td>90,9</td>
<td>68,5</td>
<td>45,0</td>
<td>9,7</td>
<td>25,3</td>
<td>14,9</td>
<td>66,1</td>
</tr>
<tr>
<td>pengembalaan 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfalfa</td>
<td>88,9</td>
<td>90,5</td>
<td>50,1</td>
<td>41,0</td>
<td>15,2</td>
<td>21,4</td>
<td>9,2</td>
<td>34,1</td>
</tr>
<tr>
<td>Hijauan Seigle (Ing: Ry)</td>
<td>18,9</td>
<td>93,7</td>
<td>61,1</td>
<td>33,1</td>
<td>10,5</td>
<td>40,5</td>
<td>5,6</td>
<td>28,8</td>
</tr>
<tr>
<td>Silase seigle</td>
<td>26,0</td>
<td>86,3</td>
<td>63,4</td>
<td>45,3</td>
<td>10,5</td>
<td>18,0</td>
<td>6,8</td>
<td>56,0</td>
</tr>
<tr>
<td>Kubis jenis cavalier yang berwarna merah.</td>
<td>17,5</td>
<td>89,5</td>
<td>35,8</td>
<td>27,9</td>
<td>14,1</td>
<td>19,7</td>
<td>7,4</td>
<td>40,2</td>
</tr>
<tr>
<td>Kubis jenis moellers (kontrol)</td>
<td>14,9</td>
<td>88,1</td>
<td>37,5</td>
<td>26,2</td>
<td>14,9</td>
<td>15,7</td>
<td>4,8</td>
<td>47,0</td>
</tr>
<tr>
<td>Kubis jenis moellers (dipupuk, 160 uN/ha)</td>
<td>13,3</td>
<td>87,1</td>
<td>36,0</td>
<td>26,9</td>
<td>17,9</td>
<td>24,8</td>
<td>7,0</td>
<td>37,9</td>
</tr>
</tbody>
</table>

1 Nitrogen yang terlaut (Ns) di dalam harar mineral dari Verie dan Demarquilly (1978).

TABEL 2. RATA-RATA, DAN KOEFISIEN DARI VARIASI (K.V) KRITERIA POKOK DARI KOMPOSISI KIMIA (n = 11)

<table>
<thead>
<tr>
<th>Karakter</th>
<th>Rata-rata</th>
<th>K. V (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK/BK</td>
<td>13,4 ± 4,4</td>
<td>33,1</td>
</tr>
<tr>
<td>NDF/BK</td>
<td>52,1 ± 11,5</td>
<td>22,1</td>
</tr>
<tr>
<td>ADF/BK</td>
<td>32,5 ± 25,8</td>
<td>25,8</td>
</tr>
<tr>
<td>NDIN/NT</td>
<td>25,6 ± 36,3</td>
<td>36,3</td>
</tr>
<tr>
<td>ADIN/NT</td>
<td>8,1 ± 34,8</td>
<td>34,8</td>
</tr>
<tr>
<td>NDIN/ADIN</td>
<td>17,6 ± 9,3</td>
<td>53,0</td>
</tr>
<tr>
<td>ADIN/NDIN</td>
<td>33,7 ± 11,9</td>
<td>35,4</td>
</tr>
</tbody>
</table>

\[
\text{Untuk keanebaranak panan ditemukan dengan pertolongan parameter statistik sempel (Tabel 2). Variasi yang paling besar ditemukan untuk fraksi fraksi nitrogen (NDIN/Nr, ADIN/Nr, ADIN/NDIN, NDIN-ADIN dan Ns/Nr) dibandingkan fraksi NDF.}
\]

Kadar yang paling besar di temukan untuk rumput yang tumbuh di padang pengembalaan 44,3%, ADIN/Nr, berbaurliar lebih sempit dibandingkan dengan NDIN/Nr yaitu antara 4,8% dengan 14,9% untuk hijauan pakan yang sama.
TABEL 3. KOEFISIEN KORELASI ANTARA FRAKSI BAHAN MAKANAN (r, n = 11)

<table>
<thead>
<tr>
<th>Fraksi</th>
<th>NDIN/Nt</th>
<th>ADIN/Nt</th>
<th>ADIN/NDIN</th>
<th>Ns/Nt</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT/BK</td>
<td>0,4</td>
<td>-0,06</td>
<td>0,372</td>
<td>-0,658</td>
</tr>
<tr>
<td>NDF/BK</td>
<td>0,309</td>
<td>0,517</td>
<td>0,248</td>
<td>0,400</td>
</tr>
<tr>
<td>ADF/BK</td>
<td>0,047</td>
<td>0,596</td>
<td>0,520</td>
<td>0,353</td>
</tr>
<tr>
<td>ADF/NDF</td>
<td>-0,281</td>
<td>0,017</td>
<td>0,328</td>
<td>0,039</td>
</tr>
<tr>
<td>NDIN/Nt</td>
<td></td>
<td>0,137</td>
<td>0,568</td>
<td>-0,594</td>
</tr>
<tr>
<td>ADIN/Nt</td>
<td></td>
<td></td>
<td>0,724</td>
<td>-0,139</td>
</tr>
</tbody>
</table>

TABEL 4. KONSUMSI DAN KECERNAAN DARI 11 HIJAUAN MAKANAN TERNAK

<table>
<thead>
<tr>
<th>Hijauan</th>
<th>BKVI (g/kg)</th>
<th>Koefisien kecermanan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silase jagung 1</td>
<td>49,4</td>
<td>68,4 69,8 59,4 45,8 47,2 - 16,6</td>
</tr>
<tr>
<td>Silase jagung 2</td>
<td>45,8</td>
<td>71,2 73,7 65,3 59,3 58,1 22,3 7,8</td>
</tr>
<tr>
<td>Rumpit yang tumbuh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>di padang pengembalian</td>
<td>35,0</td>
<td>75,6 79,4 75,8 69,1 84,4 85,6 50,5</td>
</tr>
<tr>
<td>Silase pengembalian 1</td>
<td>65,2</td>
<td>60,4 66,6 62,3 56,0 63,4 57,9 19,5</td>
</tr>
<tr>
<td>Silase pengembalian 2</td>
<td>53,9</td>
<td>62,4 65,9 64,7 62,7 58,8 47,9 35,9</td>
</tr>
<tr>
<td>Alfafa</td>
<td>61,4</td>
<td>55,2 57,1 40,3 45,4 75,6 59,2 36,3</td>
</tr>
<tr>
<td>Hijauan Seigle (Ing:Rye)</td>
<td>36,5</td>
<td>75,8 79,0 73,9 70,4 69,9 74,6 22,1</td>
</tr>
<tr>
<td>Silase Seigle</td>
<td>27,2</td>
<td>68,4 72,2 67,8 66,8 72,0 47,9 -</td>
</tr>
<tr>
<td>Kubis jenis cavaliers merah</td>
<td>70,0</td>
<td>69,0 72,0 42,4 49,4 77,5 63,4 60,9</td>
</tr>
<tr>
<td>Kubis jenis moellers</td>
<td>59,0</td>
<td>74,0 78,0 59,9 58,9 81,5 62,3 49,4</td>
</tr>
<tr>
<td>(kontrol)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kubis jenis moellers (+</td>
<td>68,8</td>
<td>74,5 76,6 56,6 59,6 86,3 81,2 71,9</td>
</tr>
<tr>
<td>160 un/ha)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

dan fraksi ADF. Fraksi nitrogen yang terikat dengan fraksi hemiselulose (NDIN-ADIN) merupakan fraksi yang menunjukkan koefisien variasi yang paling besar diantara fraksi bahan makanan yang lain. Variabilitas fraksi nitrogen yang cukup besar juga telah ditunjukkan oleh Krishmoorthy et al. (1982) dengan menggunakan bahan makanan yang berbeda, yaitu 10 macam konsentrat dan 6 macam hijauan. Penelitian ini menunjukkan suatu variasi fraksi nitrogen yang sangat kuat dibandingkan dengan fraksi struktural dari dinding sel (ditunjukkan dengan koefisien variasi = KV) yaitu: KV, NDIN/NT: 72,4% vs KV, NDF/BK: 58,9%, dan KV, ADIN/NT: 80% vs KV, ADF/BK: 67,6%. Dari seluruh pakan yang dipelajari, korelasi antara NDIN/Nt dan ADIN/Nt dengan nilai PK adalah sangat kecil (Tabel 3). Daya tahan fraksi nitrogen dan bahan kering terhadap kelarutannya di dalam larutan deterjen acid (ADS) dari Van Soest terlihat sangat berkorrelasi (r = 0,596) tetapi sebaliknya, NDIN/NT hanya sedikit berkorrelasi dengan NDF/BK (r = 0,309). Persamaan regresinya adalah sebagai berikut:

\[
ADIN/N_t = 0,15 ADF/BK - 3,41 \quad (r = 0,60; n = 11), \quad \text{dan} \quad \text{MIN/N}_t = 0,25 NDF/BK - 12,63 \quad (r = 0,31; n = 11)
\]
TABEL 5. KECERNAAN GLOBAL SEMU DAN KECERNAAN GLOBAL RIEL UNTUK PROTEIN

<table>
<thead>
<tr>
<th>Hijauan</th>
<th>Keceerana global protein (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semu</td>
</tr>
<tr>
<td>Silase jagung 1</td>
<td>47,2</td>
</tr>
<tr>
<td>Silase jagung 2</td>
<td>58,1</td>
</tr>
<tr>
<td>Rumput yang tumbuh di padang penggembalaan</td>
<td>84,8</td>
</tr>
<tr>
<td>Silase penggembalaan (1)</td>
<td>63,4</td>
</tr>
<tr>
<td>Silase penggembalaan (2)</td>
<td>58,8</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>75,6</td>
</tr>
<tr>
<td>Hijauan Seigle (Ing:Rye)</td>
<td>69,9</td>
</tr>
<tr>
<td>Silase Seigle</td>
<td>72,0</td>
</tr>
<tr>
<td>Kubis jenis cavvaliers merah</td>
<td>77,5</td>
</tr>
<tr>
<td>Kubis jenis moellers kontrol</td>
<td>81,5</td>
</tr>
<tr>
<td>Kubis jenis moellers (= 160 uN/ha)</td>
<td>86,3</td>
</tr>
</tbody>
</table>

TABEL 6. RATA-RATA, DAN KOEFISIEN VARIASI (KV) DARI KECERNAAN PROTEIN

<table>
<thead>
<tr>
<th>Fraksi</th>
<th>Rata-rata</th>
<th>KV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semu</td>
<td>70,4 ± 12,3</td>
<td>17,5</td>
</tr>
<tr>
<td>Riel</td>
<td>89,1 ± 5,6</td>
<td>6,3</td>
</tr>
</tbody>
</table>

Korelasi antara bagian yang terlarut di dalam larutan mineral (Ns), korelasi antara parameter ini dan kelarutan di dalam larutan deterjen netral (NDSN) adalah:

\[Ns/N_{p} = 0.83 \times NDSN/N_{p} - 17.7 (r = 0.60; n = 11) \]

Dari hal tersebut diatas, fraksi nitrogen yang berikatan dengan dinding sel total (NDIN) atau yang terikat dengan kompleks ligno-selulosa (ADIN) adalah sangat kecil korelasinya dengan karakteristik komposisi kimia bahan pakan ternak seperti kadar BK, PK, NDF, dan ADF (Tabel 3).

Kecernaan Global

Untuk sebuaah macam hijauan pakan yang dipelajari, kecernaan BK berkisar antara 55% untuk alfalfa kering dan 75,8% untuk hijauan Seigle (Tabel 4). Bahan pakanan yang memberikan kecernaan BK paling rendah adalah pakan yang mempunyai kecernaan dari fraksi-fraksi NDF dan ADF yang paling rendah. Alfalfa kering, memberikan kecernaan fraksi NDF sekitar 40% dan kecernaan fraksi ADF sekitar 45%. Sebaliknya, kecernaan fraksi NDF dan ADF yang paling tinggi di temukan pada rumput yang tumbuh di padang penggembalaan (masing-masing adalah sebesar 73,8 dan 70,1%).

Kecernaan PK adalah sekitar 47,2% untuk silase jagung 1 dan 86% untuk kubis jenis moellers yang mendapat pemupukan (160 uN/Ha). Untuk kecernaan nitrogen total (PK), nitrogen (NDIN dan nitrogen yang terikat ke dalam fraksi ADF (ADIN) bervariasi secara paralel untuk hijauan yang berbeda-beda.
TABEL 7. KECERNAAN GLOBAL YANG TERLIHAT DARI NITROGEN DINDING SEL (NDIN) DAN NITROGEN LIGNOCÉLLULOSE (ADIN)

<table>
<thead>
<tr>
<th>Hidangan</th>
<th>Keceranaan global semua (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDIN</td>
</tr>
<tr>
<td>Silase jagung 1</td>
<td>TD*</td>
</tr>
<tr>
<td>Silase jagung 2</td>
<td>22,3</td>
</tr>
<tr>
<td>Rumput yang hidup di padang penggembalaan</td>
<td>85,6</td>
</tr>
<tr>
<td>Silase penggembalaan (1)</td>
<td>57,9</td>
</tr>
<tr>
<td>Silase penggembalaan (2)</td>
<td>47,9</td>
</tr>
<tr>
<td>Alfafa kering</td>
<td>59,2</td>
</tr>
<tr>
<td>Hijauan Seigle (Lg/Rye)</td>
<td>74,6</td>
</tr>
<tr>
<td>Silase Seigle</td>
<td>47,8</td>
</tr>
<tr>
<td>Kubis jenis cauliflowers merah</td>
<td>63,4</td>
</tr>
<tr>
<td>Kubis jenis moilliers kontrol</td>
<td>62,3</td>
</tr>
<tr>
<td>Kubis jenis moilliers (= 160 uN/ha)</td>
<td>81,2</td>
</tr>
</tbody>
</table>

* Tidak dideterminasi

TABEL 8. RATA-RATA, DAN KOEFISIEN VARIASI (KV) DARI KECERNAAN FRAKSI ADIN DAN NDIN

<table>
<thead>
<tr>
<th>Fraksi</th>
<th>Rata-rata</th>
<th>KV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDIN (n = 10)</td>
<td>60,2 ± 18,4</td>
<td>30,6</td>
</tr>
<tr>
<td>ADIN (n = 10)</td>
<td>37,1 ± 20,9</td>
<td>56,3</td>
</tr>
</tbody>
</table>

Hubungan Antara Keceranaan Protein Total dan Kadar Fraksi Nitrogen

Dari keseluruhan hijauan makanan ternak yang dipelajari, kuantitas nitrogen feses berhubungan sangat erat dengan kuantitas nitrogen ADIN, tetapi hal tersebut hanya ditemukan di dalam sembilan dari sebelas bahan makanan yang diteliti, sedangkan kedua silase jagung memberikan hasil yang berbeda. Berdasarkan sembilan hijauan makanan ternak (tanpa silase jagung 1 dan 2), korelasi antara kualitas ransum dan produksi nitrogen feses dapat disajikan sebagai berikut:

\[r = 0,837 \]
\[r = 0,983 \]

Konsuasi ADIN ——— NDIN feses ——— N, feses

Untuk seluruh bahan makanan yang dipelajari, keceranaan global semua untuk PK, rata-rata adalah 70,4% dengan koefisien variasi yang cukup tinggi (17,5%). Nilai paling rendah, ditemukan pada silase jagung 1 (47,2%) dan nilai yang paling besar ditemukan pada kubis jenis moilliers (86,3%) yang mendapat pemupukan (+ 160 uN/ha). Kecerana tersebut berhubungan nyata \((P < 0,001)\) dengan kuantitas PK pakan \((r = 0,382, n = 11)\), tetapi sangat kecil korelasinya \((r\) dengan proporsi NDIN dan ADIN \((0,187 dan 0,285)\). Demikian juga, kecerana NDIN adalah sangat kecil korelasinya dengan ADIN. Seperti yang dijelaskan sebelumnya, diantaranya berhubungan bahan pakan yang dipelajari, silase jagung 1 dan 2 mempunyai sifat khusus (Gambar 1), yang kemungkinan karena pada hewan yang hanya menerima pakan silase jagung kecadi fermentasi di dalam rumen, ditinjau dari teresdianya N amonia, tidak mempengaruhi untuk mencerna dinding sel dan
fraksi didinding sel secara keseluruhan.

Bila kita tidak memperhitungkan kedua silase jagung tersebut, korelasi ADIN/Nt dengan kecercaan protein menjadi lebih erat ($r = -0.688$). Hasil ini lebih tinggi dari pada yang ditemukan oleh Van Soest (1982) untuk hijauan yang tidak dipanaskan ($r = -0.51; n = 28$). Demikian pula untuk korelasi antara NDIN/N_t dan bagian dari fraksi ADIN didalam fraksi NDIN (ADIN/NDIN) ($r = -0.803$).

\[
\begin{align*}
 r &= -0.688 \\
 \text{ADIN/N_t} &\quad \text{kecercaan N_t} \\
 r &= -0.803 \\
 \text{ADIN/NDIN} &\quad \text{kecercaan NDIN} \\
 r &= 0.712 \\
 \text{kecercaan N_t}
\end{align*}
\]

Nitrogen didinding sel fosos, sebagai nilai indikasi dari nitrogen bahan makanan yang tidak tercerma, dapat dihitung untuk mengestimasi kecercaan kecercaan global nyata untuk protein yang rata-ratanya adalah 89,1% (Tabel 5) dengan koefisien variasi cukup rendah (6,3%). Nilai yang paling rendah ditemukan pada silase jagung (79,4%) dan nilai yang paling besar ditemukan pada kuwis jenis moelliers yang dipupuk (95,3%). Nilai-nilai tersebut sangat dekat dengan yang ditemukan oleh Weiss et al. (1989) yang menyatakan bahwa kecercaan global riel dari fraksi nitrogen totalya adalah 94,0; 88,0 dan 86%, berturut-turut untuk alitfia yang tidak dipanaskan, dipanaskan pada suhu 35°C dan 60°C. Untuk seluruh bahan makanan yang dipelajari kecercaan global semua NDIN rata-rata adalah 60,2% dengan koefisien variasi sangat kuat (30,6%). Nilai yang rendah ditemukan pada silase jagung 2 (22,3%) dan nilai yang paling besar ditemukan di rumput yang tumbuh di padang pengembalaan (sekitar 85,6%). NDIN ini berhubungan secara signifcatif ($P < 0,001$) dengan kadar nitrogen didinding sel bahan makanan ($r = 0,98; n = 11$) (Tabel 7).

Variasi antar pakan, dari kecercaan global semua untuk ADIN adalah lebih kuat dibandingkan dengan variasi PK atau fraksi NDIN. Nilai yang paling kecil ditunjukkan silase jagung 2 (7,8%) dan nilai yang paling besar ditunjukkan oleh Kuwis jenis moelliers yang mendapat pupukan (71,9%). Bila diperhitungkan estimasi dari kecercaan global riel PK, tidak timbul suatu korelasi dengan proporsi ADIN/NT ($r = 0,039$) observasi ini cenderung menyatakan bahwa perbedaan kecercaan yang diamati dilingkat rumen, dan yang berhubungan dengan proporsi ADIN/NT seperti yang dinyatakan oleh Lejeme (1985), mungkin diimbangi dengan kecercaan yang berlangsung di dalam saluran pencernaan bagian bawah.

Kesimpulan

Pembagian nitrogen tumbuh-tumbuhan ke dalam beberapa fraksi tergantung kelarutannya di dalam larutan deterjen dari Van Soest, dan ini merupakan suatu kriteria yang dapat membuktikan keterkaitan protein oleh polysakarida struktural.
Penelitian dari repartisi ini harus dapat melengkapi elemen-elemen untuk menerangkan variasi di dalam pengukuran kececeran nitrogen, atau lebih tepatnya perbandingan antara ADIN/NDIN, yang menandai derajat keterkaitan nitrogen dinding sel dan harus dapat menerangkan bahwa kecekeran (NDIN/Nr) adalah konstan.

Penggunaan repartisi fraksi-fraksi nitrogen untuk meramalkan kececeran nitrogen total hanya mungkin bila kececeran di dalam rumen terciris dalam kondisi yang menguntungkan.

Daftar Pustaka

Lejeune, C.V. 1985. Fermentation des matieres azotées alimentaires dans le rumen. These. INRA, Nancy.

