HUBUNGAN ANTARA BESAR GLOBULA LEMAK DENGAN SURFACE FREE FAT DALAM SUSU BUBUK LEMAK

Setyono *)

INTISARI

Tujuan penelitian ini adalah untuk mengetahui hubungan antara besar globula lemak dengan surface free fat dalam susu babub pada tekanan homogenisasi dan campuran skin milk dengan lemak. Penelitian ini menggunakan variabel tekanan homogenisasi 75, 100, 125, 150, dan 175 bar dengan variabel lemak minyak kelapa, AMF (anhydrous milk fat) dan campuran 50% minyak kelapa dengan 50% AMF. Hasil penelitian dianalisis dengan rancangan acak lengkap faktorial 3 x 3 (5 variabel homogenisasi dan 3 variabel lemak). Untuk menggali hubungan besarnya globula lemak dengan surface free fat dianalisis dengan korelasi regresi.

Hasil penelitian menunjukkan bahwa tekanan homogenisasi berpengaruh sangat nyata (P<0,01), berarti setiap tekanan homogenisasi mempunyai perbedaan yang sangat nyata. Semakin besar tekanan homogenisasi, semakin kecil ukuran globula lemak, dan semakin kecil surface free fat-nya. Pada campuran berbagai macam lemak, tekanan homogenisasi berpengaruh sangat nyata (P<0,01). Untuk ukuran globula lemak didapat hasil yang terkecil 0,4103 ± 0,0017, dan surface free fat terkecil (0,7931 ± 0,0987). Pada analisis temperatur iniesi dalam proses drying diperoleh hasil yang berbeda sangat nyata (P<0,01), serta menghasilkan surface free fat yang terkecil pada temperatur 215°C. Terdapat hubungan yang sangat erat antara besarnya globula lemak dengan surface free fat (R² = 0,774), dengan persamaan regresi Y = 0,5045 - 0,0028X₁ - 0,0042X₂ - 0,0037X₃ - 0,0052X₄ = 0,0026X₅.

(Kata kunci: Globula lemak, Surface free fat, Homogenisasi, Skin milk, Anhydrous Milk fat).

THE CORRELATION BETWEEN FAT GLOBULA AND SURFACE FREE FAT OF MILK POWDER

ABSTRACT

The study was conducted to investigate the correlation between fat globula and surface free fat of milk powder at different homogenization pressure and skin milk fat mixture. The experiment was done by applying different homogenization pressures of 75, 100, 125, 150, and 175 bar with variable of coconut oil and anhydrous milk fat (AMF) at 50%, respectively. The statistical analyses were done by using 5 x 3 factorial of variance analyses (5 variables of homogenization, and 3 variables of fat). The correlation between SFF and fat globula was analysed by regression correlation.

The results indicated that there were significant differences (P < 0,01) due to homogenization pressure on SFF; the higher homogenization pressure, resulted smaller fat globula size, and the smaller the SFF. Based on the variation of oil mixture, it was shown that the homogenization pressure affected significantly (P < 0,01). The smallest fat globula was 0,4103 ± 0,0017, and the SFF was 0,7931 ± 0,0987. The inlet temperature of drying process resulted significant differences (P < 0,01) on SFF, the smallest SFF was obtained at 215°C. There were significant correlations between fat globula size and surface free fat with the coefficient of determination R² = 0,774; and the regression equation was Y = 0,5045 - 0,0028X₁ - 0,0042X₂ - 0,0037X₃ - 0,0052X₄ = 0,0026X₅.

(Key Words: Fat globula, Surface free fat, Homogenization Skin milk, Fat).

*) Staf Pengajar Jurusan Teknologi Hasil Terark Fakultas Peternakan UGM, Yogyakarta.
PENDAHULUAN

Didalam proses sing air susu dan pengolakannya proses homogenisasi merupakan proses yang penting terutama dalam proses sing fat filled milk (rekombinasi lemak dalam susu). Dikatakan oleh Harper dan Hall (1976), bahwa homogenisasi adalah peristiwa pemecahan ukuran globula lemak menjadi ukuran yang lebih kecil, sehingga lemak tersebut teremulsi secara merata didalam air susu dan membuat susu yang bersifat stabil (steady state), terutama pada air susu pasteurisasi, sterilisasi, maupun air susu yang akan dibuat susuk bubuk (milk powder). Pendapat ini diperkuat oleh Hall dan Hedrick (1966), bahwa proses homogenisasi merupakan bagian yang penting dalam proses pembuatan susu bubuk, dan akan menentukan hasil akhir serta meratakan panas pada saat evaporasi maupun proses spray drying. Homogenisasi akan efektif pada tekanan 2000 sampai 3000 psi pada temperatur 120°F, dan dapat mereduksi besarnya globula lemak menjadi kurang dari 1 mikron. Besarnya diameter nata rata ukuran globula lemak dalam full cream milk yang konsisten yaitu 2 - 6 mikron, tetapi dengan homogenisasi dapat diturunkan menjadi 0,1 - 0,2 mikron dan akan memperkecil jumlah lemak bebas (free fat), terutama pada tekanan homogenisasi 2500 - 3000 psi.

Lampert (1975) menyatakan bahwa selain tekanan homogenisasi yang akan memecah ukuran globula lemak juga macam alat homogenizer. Dikatakan lebih lanjut, mengecilnya ukuran globula lemak dipengaruhi juga oleh berapa kali globula lemak tersebut diambil dari dalam alat homogenizer, sehingga ditunjuk dari macam alatnya, maka homogenizer didehakan menjadi one stage, two stage, dan multi stage homogenizer. Dikatakan oleh Hall dan Hedrick (1966), bahwa temperatur adonan yang baik untuk homogenisasi adalah 120° sampai 160°F agar lebih efisien dalam menggunakan tenaga dan akan diperoleh ukuran globula lemak yang lebih kecil, tekanan ayang efisien adalah 150 bar atau 3000 psi.

MATERI DAN METODE

Prinsip kerja compounding

HASIL DAN PEMBAHASAN

Dari hasil pengamatan terhadap besarnya ukuran globula lemak, didapatkan bahwa semakin besar tekanan homogenisasi cenderung semakin kecil ukuran globula lemak. Macam lemak yang dicamparkan juga berpengaruh pada besarnya globula lemak dan macam alat homogenizer.
Tabel 3. Rata-rata hasil pengamatan analisis SFF dari berbagai macam tekanan homogenisasi pada susu bubuk.

<table>
<thead>
<tr>
<th>Alat</th>
<th>Tekanan</th>
<th>P₁</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>P₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietil eter</td>
<td>2,0141<sup>a</sup></td>
<td>1,9181<sup>b</sup></td>
<td>1,1683<sup>c</sup></td>
<td>0,7931<sup>d</sup></td>
<td>0,9078<sup>e</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td></td>
<td>0,3756</td>
<td>0,2464</td>
<td>0,1670</td>
<td>0,0887</td>
<td>0,0780</td>
<td></td>
</tr>
<tr>
<td>CCI₄</td>
<td>2,6129<sup>f</sup></td>
<td>1,8888<sup>g</sup></td>
<td>1,3809<sup>h</sup></td>
<td>0,0936<sup>i</sup></td>
<td>1,0055<sup>j</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td></td>
<td>0,3609</td>
<td>0,0607</td>
<td>0,2313</td>
<td>0,1261</td>
<td>0,0822</td>
<td></td>
</tr>
</tbody>
</table>

a, b, c, ... j superskrip yang berbeda menunjukkan perbedaan yang sangat nyata (P < 0,01).

Tabel 4. Persamaan regresi dan koefisien determinasi

<table>
<thead>
<tr>
<th>Persamaan garis regresi</th>
<th>Koefisien determinasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y₁ = 0,8365 - 0,0032X₁ - 0,0024X₂</td>
<td>R² = 0,682</td>
</tr>
<tr>
<td>Y₂ = 0,5983 - 0,0049X₁ - 0,0028X₂</td>
<td>R² = 0,675</td>
</tr>
<tr>
<td>Y₃ = 0,5345 - 0,0071X₁ - 0,0058X₂</td>
<td>R² = 0,698</td>
</tr>
<tr>
<td>Y₄ = 0,5045 - 0,0028X₁ - 0,0042X₂</td>
<td>R² = 0,774</td>
</tr>
<tr>
<td>Y₅ = 0,5467 - 0,0023X₁ - 0,0034X₂</td>
<td>R² = 0,684</td>
</tr>
<tr>
<td>- 0,0027X₁ - 0,0024X₂ - 0,0021X₃</td>
<td></td>
</tr>
</tbody>
</table>

Hasil makroian uji kruskal-Wallis menunjukkan bahwa SFF-nya globula tidak signifikan.

ISSN 0126 - 4400
globula lemak dengan SFF dan korelasi yang positif, artinya penurunan besarnya globula lemak diikuti oleh turunnya persen SFF. Hal ini sesuai dengan pendapat Hall dan Hedrick (1966), bila tekanan homogenisasi dinilai maka akan terjadi penurunan ukuran globula lemak dan akan diikuti dengan mengecilnya jumlah lemak yang berats (SFF). Tekanan yang optimum adalah pada tekanan homogenisasi 150 bar, dengan besarnya ukuran globula lemak (0,5345 ± 0,0017) dan SFF (0,7931 ± 0,0987). Diulangkali pula dari perhitungan regresi bahwa jumlah efektif dari masing-masing tekanan homogenisasi adalah P1 = 5,7%, P2 = 8,8%, P3 = 14,3%, P4 = 32,2%, dan P5 = 16,4%. Temuan dini sch de-average dari sumber daya yang terbesar adalah telah disahkan pada tekanan homogenisasi P5 (150 bar), dan persamaan garis regresi adalah Y = 0,5045 - 0,0028X1 - 0,0042X2 - 0,0037X3 - 0,0052X4 - 0,0026X5. Setelahnya dikatakan oleh Hall dan Hedrick (1966); Lampert (1975) serta Happer dan Hall (1976), bahwa makro koci ukuran globula lemak mengakibatkan makin luas permukaannya, sehingga semakin banyak globula lemak yang terikat oleh kasvin, juga mengakibatkan lemak yang berats semakin sedikit atau SFF-nya semakin koci.

KESIMPULAN

Hasil penelitian dapat disimpulkan sebagai berikut. Makin besar tekanan homogenisasi menghasilkan ukuran globula lemak semakin koci. One stage homogenizer pada tekanan 175 bar menghasilkan globula lemak dengan ukuran terkecil, dan SFF terkecil dengan rentangan ukuran terkecil. Two stage homogenizer pada tekanan 150 bar adalah tekanan yang menghasilkan ukuran globula lemak optimum. Untuk pencampuran dengan berbagai macam lemak, Coconut oil menghasilkan globula lemak yang lebih kecil (0,4103 ± 0,0017) dibandingkan dengan anhydrous milk fat (AMF) (0,6386 ± 0,0057) dan lemak campuran (0,5407 ± 0,0040) Makin besar tekanan homogenisasi makro koci surface free fat (SFF). Dari pengukuran dengan pelarut dietil eter, didapati SFF paling koci pada tekanan 150 bar (0,7931 ± 0,0987), demikian juga dengan pelarut CCl3 (0,8936 ± 0,1261). Kedua macam analisis yaitu dengan pelarut dietil eter dan karbon tetrakhlor (CCl3) tidak menunjukkan perbedaan yang nyata. Ada hubungan yang erat antara besaran globula lemak dengan surface free fat R = 0,774.

DAFTAR PUSTAKA

Kessler, H.C., 1981. Food Engineering and Dairy Technology Published by Wesley Akesler PO box. 1721 D 8050 Freising, Germany.

ISSN 0126 - 4400
Gb. 1: Hubungan antara rata-rata globula lemak berbagai macam tekanan homogenisasi dan macam alat pada minyak campuran.

Gb. 2: Hubungan ukuran rata-rata globula lemak berbagai macam lemak dengan tekanan homogenisasi.

Gb. 3: Hubungan ukuran rata-rata analisis SFF dan berbagai macam tekanan homogenisasi susu bubuk.

Gb. 4: Hubungan ukuran rata-rata SFF dengan temperatur inlet.

Tentuikan pengaruh rata-rata tekanan homogenisasi dari minyak campuran yang digunakan dalam tinja yang sebesar 12% (PEN). Inspeksi individu kemudian diuji dengan mengukur dan analisis fisik mæzbur buah Longissimus Dorsi.

Hasil: arus proton kecil [P] terhadap rata-rata kearifan 56,16%, 59,7%, dan 61,1.

Pengaruh tinja daging terhadap suhu cooking (215°C dan 250°C) adalah: