
Bahan pakan yang diperlukan langsung diperoleh dan tidak jarang harus berkompetisi penggunaannya dengan manusia. Dengan demikian, batas-batas nilai produksi yang optimal dari ternak kelinci perlu disusun dan kondisi lingkungan setempat. Untuk ternak kelinci, tampaknya hal ini masih perlu diperhatikan di Indonesia.


STUDI KANDUNGGAN UNSUR RENIK MANGAN (Mn) DAN YODIUM (I) DI DALAM BAHAN TAMBAHAN PAKAN DENGAN MENGGUNAKAN METODE ANALISIS PENGAKTIFAN NEUTRON

Bintara Her Sasangka *)

ABSTRAK

Statu percobaan telah dilakukan untuk mengetahui kandungan Mangan (Mn) dan Yodium (I) dalam bahan tambahan pakan dengan cara analisis pengaktifan neutron. Sampel yang digunakan pada percobaan ini dalam bentuk bubuk, berat sekitar 1 gram, diiradiasi dengan sumber neutron (reaktor) pada flux 7,8 x 10^7 n/cm²/dt, selama 1 menit dengan kekurutan 1,3 K.W. Hasil percobaan menunjukkan bahwa nilai rata-rata kandungan Mn dan I di dalam bahan tambahan pakan tersebut masing-masing sebesar 1,05 ± 0,15 ppm Mn dan 131,93 ± 10,66 ppm I.

*) Sut Aplikasi Isotop dan Radiasi, BATAN

PENDAHULUAN


Sebagai contoh timbulnya penyakit gondok dan kritisim pada hewan dan manusia sangat erat hubungannya dengan jumlah yodium (I) yang dikonsumsi. Begitu pula pertambahan tubuh dan tulang yang tidak sempurna, atasia pada hewan-hewan yang baru lahir, serta gangguan metabolisme lemak dan karbohidrat merupakan salah satu
akibat dari kurangnya mangan (Mn) yang diperoleh hewan dari ransum. Untuk mencegah timbulnya gejala kekurangan unsur tersebut, analisis kandungan mineral di dalam bahan pakan petu dilakukan sehingga pada penyusunan ransum, sudah ditekahi unsur apa saja yang diperlukan sesuai dengan kebutuhan masing-masing hewan.


Dalam percobaan ini diterapkan pemanfaatan teknik nuklir yaitu penggunaan analisis pengaktifan neutron terhadap kandungan unsur renik Mn dan I dalam bahan pakan ternak.

MATERI DAN METODE

Prinsip kerja analisis pengaktifan neutron.

Sampel yang akan dianalisis kandungan unsur reniknya, diiradiasi terlebih dahulu dengan menggunakan sumber neutron reaktor. Untuk-unsur yang berada di dalam sampel tersebut, diiradiasi akan berubah menjadi suatu unsur yang bersifat radioaktif dari sinar gamma yang dipancarkan oleh unsur radioaktif tersebut, dengan menggunakan suatu alat spektrofotometer gamma, kandungan unsur dalam sampel dapat dianalisis baik secara kualitatif, maupun kuantitatif (Wang et al., 1975).

Penyiapan sampel, standar dan alat yang digunakan.

Sampel yang digunakan dalam percobaan ini berupa bahan pakan tambahan untuk ternak, diperoleh dari pabrik pakan ternak di Amerika, berupa bubuk. Sekitar 1 gram sampel tersebut dimasukkan ke dalam tabung polietilen, kemudian diiradiasi dengan sumber neutron selama 1 menit (dengan pneumatik), kekuatan 1,3 Kw pada flaks 7,8 x 10^n n/cm^2/dt; sampel yang diiradiasi sebanyak 6 buah dengan berat yang hampir sama.

Standar yang digunakan untuk mengetahui kandungan unsur Mn dan I dalam sampel ialah Mn(NO_3)_2 dan NH_4I, masing-masing sebanyak 0,5 mg. Kedua macam standar tersebut kemudian dimasukkan ke dalam 2 tabung polietilen dan diiradiasi dengan perlakuan sama seperti sampel. Pencairan sampel dan standar dilakukan segera setelah selesai iradiasi, karena Mn dan I yang berbentuk dari hasil iradiasi mempunyai waktu paruh yang pendek, yaitu berturut-turut memenujukkan 2,38 jam dan 25 menit. Pencairan dilakukan dengan menggunakan alat cacak saluran gamma (Multi Channel Analyzer 8-80, Canberra Industries) yang telah dikalibrasi terlebih dahulu dengan ^137Cs. Kalibrasi alat petu dilakukan untuk mengetahui besarnya energi pada tiap saluran.

Dari yang diperoleh dari alat cacak tersebut selanjutnya diplot pada suatu grafik (Gambar 1-4), kemudian ditentukan secara kuantitatif maupun kualitatif kandungan unsur yang terdapat di dalam sampel, berdasarkan standar yang digunakan.

HASIL DAN PEMBAHASAN

Spektrum kalibrasi alat cacak saluran gamma dengan menggunakan ^137Cs, diperoleh puncak tertinggi pada saluran 95 (Gambar 1). Sinar gamma yang dipancarkan oleh ^137Cs mempunyai energi sebesar 0,662 MeV, sehingga tiap saluran mempunyai energi sebesar 7 KeV

Senyawa Mn(NO_3)_2 dan NH_4I yang digunakan sebagai standar setelah diiradiasi dengan sumber neutron selama 1 menit, maka unsur Mn dan I yang terkena iradiasi di dalamnya akan menjadi bersifat radioaktif, Mn dan I. Spektrum yang diperoleh dari hasil pencacahan standar ^55Mn (Gambar 2) dan saluran 63 untuk ^125I (Gambar 3). Setelah dikalibrasi dengan besarnya energi tiap saluran (7 KeV/ saluran), pencak-cakcuan yang ada pada spektrum tersebut mempunyai energi sebesar 854 KeV dan 441 KeV, masing-masing untuk Mn dan I. Dari tabel nuklida, kedua energi tersebut adalah hasil pencacahan sinar gamma yang dikeluarkan oleh Mn dan I.

Sahlah satu contoh hasil pencacahan sampel, diperoleh suatu spektrum dengan 2 macam ketegangan pencak (Gambar 4). Kedua puncak tersebut terletak pada saluran 63 dan 122. Karena besarnya energi tiap saluran 7 KeV maka kedua puncak tersebut mempunyai energi masing-masing 0,441 MeV dan 0,854 MeV. Berdasarkan tabel nuklida dan energi yang dipancarkan oleh unsur radioaktif yang terkena iradiasi di dalam standard, sampel yang diiradiasi tersebut mengandung unsur Mn dan I. Perhitungan secara kuantitatif, nilai rata-rata kandungan unsur renik di dalam sampel adalah sebesar 91,05 ± 5,19 ppm Mn dan 131,93 ± 10,66 ppm I.

Kebutuhan unsur renik tersebut bagi ternak relatif sedikit dan jumlahnya sangat ber variasi tergantung pada jenis hewan yang. Pada ternak ayam kebutuhan minimal untuk pembuahan dan produksi yang normal memerlukan sekitar 55 mg Mn/Kg pakan dan 5-9 ug I/hari; demba 20 mg Mn/Kg pakan dan 30-100 ug I/hari; sapi 16-40 mg Mn/Kg pakan da 400-800 ug I/hari (Maynard et al., 1979; Underwood, 1977, 1980).

Mengingat kebutuhan Mn dan I untuk ternak relatif rendah, maka pemberian bahan tambahan pakan tersebut untuk ternak apabila akan digunakan sebagai sumber Mn dan I perlu diperhatikan jumlahnya. Pemberian yang berlebihan dapat menimbulkan keracunan bagi hewan tersebut.

Untuk memperkuat penghitungan kebutuhan mineral bagi masing-masing ternak dalam penyusunan
masum, sebaiknya pakan yang akan digunakan, perlu dianalisis terlebih dahulu kandungan mineraunya. Salah satu cara analisis adalah dengan menggunakan metode pengaktikan neutron.

Beberapa keuntungan dapat diperoleh dari penggunaan analisis pengaktikan neutron untuk penentuan kandungan unsur renik di dalam suatu sampel, yaitu: (1) Mempunyai kepekaan cukup tinggi dan butes deteks sangat rendah, misalnya untuk unsur Na masih dapat diukur sampai dengan kadar 0,007 ug. (2) Analisis unsur renik secara kimiai masih memungkinkan terjadi kontaminasi dari luar cukup besar, misalnya dari air, gas, bahan perekat, debu (Abdullah, 1968). Dengan cara analisis pengaktikan neutron adanya kontaminasi dari luar dapat dihindari asalkan kontaminasi tidak terjadi sebelum dilakukan iradiasi.

KESIMPULAN

Dengan menggunakan alat cahaya satuan ganda, kandungan 2 unsur renik Mn dan I dapat diketahui sekaligus di dalam sampel berdasarkan perbedaan energi yang dipancarkan. Konsentrasi Mn dan I di dalam bahan tambahan pakan adalah sebesar 91,05 ± 3,19 ppm Mn dan 131,93 ± 10,66 ppm I. (tabel I).

DAFTAR PUSTAKA


--- Chart of the Nuclear, Knolls Atomic Power Laboratory, Naval Reactor, U.S. Atomic Commission.
Susetyo, W., 1984, Instrumentasi Kimia II, Spektrometri Gamma, Pustiklat BATAN.

Tabel I. Hasil penganalisaan kandungan unsur renik Mn dan I dalam bahan tambahan pakan ternak

<table>
<thead>
<tr>
<th>Cuplikan</th>
<th>Berat sampel (gram)</th>
<th>Mn (ppm)</th>
<th>I (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,000</td>
<td>96,90</td>
<td>140,49</td>
</tr>
<tr>
<td>2</td>
<td>0,997</td>
<td>94,93</td>
<td>147,96</td>
</tr>
<tr>
<td>3</td>
<td>0,956</td>
<td>93,64</td>
<td>129,10</td>
</tr>
<tr>
<td>4</td>
<td>0,890</td>
<td>83,02</td>
<td>121,31</td>
</tr>
<tr>
<td>5</td>
<td>0,950</td>
<td>90,48</td>
<td>130,65</td>
</tr>
<tr>
<td>6</td>
<td>0,900</td>
<td>87,32</td>
<td>121,36</td>
</tr>
</tbody>
</table>

Rata-rata 91,05 ± 3,19 131,93 ± 10,66
Gambar 4. Spektrum sinar gamma salah satu contoh sampel kohlen makan tambahan yang telah dicelup.

7 Ke-Varuhun