

Bulletin of Animal Science

ISSN-0126-4400/E-ISSN-2407-876X Accredited: 36a/E/KPT/2016 http://buletinpeternakan.fapet.ugm.ac.id/

Doi: 10.21059/buletinpeternak.v42i3.33724

Identification of a Differentiation Factor of Indonesian Ongole Cattle Breeds Based on Microsatellite Markers and Mitochondrial DNA

Paskah Partogi Agung^{1*} and Alfandy Hermansyah²

¹Research Center for Biotechnology-Indonesian Insitute of Sciences, Cibinong, 16911, Indonesia ²Surya University, Tangerang, 15810, Indonesia

ABSTRACT

Article history Submitted: 6 March 2018 Accepted: 30 July 2018

* Corresponding author: Telp. +62 822 4727 0843 E-mail: paskah_partogi@yahoo.com

This study was conducted to identify the differentiation factor of Indonesian Ongole cattle breeds (Sumba Ongole and Ongole Grade) based on the 12 microsatellite markers and Cyt b gene polymorphism. A total of 50 blood samples (25 samples for each cattle breed) were used in this study. The multiplex DNA fragment analysis was conducted for allele identification based on the microsatellite markers. The haplotype identification (based on the mitochondrial DNA) was conducted using restriction fragment length polymorphism (RFLP) analysis with three restriction enzymes i.e. HinfI, HaeIII, and XbaI. Twelve microsatellite loci in this study revealed high polymorphism. A total of 82 alleles were detected in the SO cattle and 117 alleles were detected in the PO cattle. The TGLA227 and ETH225 were specific locus candidates which are different in the size and the number of alleles in the SO and PO cattle breeds. The B (HinfI), D (HaeIII), and Y (XbaI) haplotypes were found only in the PO cattle breed samples. The X haplotype was found in all samples of the SO cattle breed but was not found in all samples of the PO cattle breed. The Y haplotype was found in all samples of the PO cattle breed but was not found in all samples of the SO cattle breed. It can be concluded that the TGLA227 and ETH225 (based on microsatellite markers) and the B, D, X, and Y haplotypes (based on the mitochondrial DNA) can be considered as the differentiation factors between the SO and PO cattle breeds.

Keywords: Differentiation, Identification, Microsatellite, Mitochondria, Ongole

Introduction

Sumba Ongole (SO) are one of the local Indonesian cattle breeds. The existence of the SO cattle in Indonesia began since the Indian Ongole breed was imported from India in 1914 and centralized in Sumba Island (East Nusa Tenggara Province) for breeding programs (Ministry of Agriculture of the Republic of Indonesia, 2014). Since then, the Ongole generations resulted from breeding programs in the Sumba Island have been known as Sumba Ongole (SO) cattle (Hardjosubroto, 2004). The SO cattle have excellent potential to gain higher dressing percentage (>50%) compared with other local cattle breeds in Indonesia (Agung *et al.*, 2015).

The phenotype characteristics of the SO cattle are closely similar with the Ongole Grade's cattle (known as PO cattle and spread out across in the Java Island), and it is difficult to identify these two Ongole breeds based on the phenotypic parameters because the PO cattle is a crossbred of uncontrolled mating of the SO cattle breed and Java cattle breed (Suyadi *et al.*, 2014) or other Indonesian local breeds (Sudrajad and Subiharta, 2012). In order to resolve the difficulties in the SO

and PO identification, a scientific investigation is needed to find the differences between the SO and PO cattle breeds based on their genetic information.

The development of molecular genetic analysis has made it possible to study the potency of certain cattle breeds at the deoxyribonucleic acid (DNA) level. Microsatellites are defined as sequential repeats of a 1–6 nucleotide motif and found throughout the genomes of prokaryotes and eukaryotes (Haasl and Payseur, 2012). The microsatellite markers can be used for parentage verification (Radko, 2010), paternity testing (Stevanovic *et al.*, 2010), assessing the genetic diversity (Seo *et al.*, 2017), and also can be used for estimating the genetic differentiation (Rutledge *et al.*, 2010).

Mitochondria have been characterized as the powerhouses of the cell, because their most basic function is oxidative phosphorylation (Ladoukakis and Zouros, 2017). Mammalian mitochondrial DNA is a gene-dense, doublestranded DNA (dsDNA) molecule of 16.6 kb, which encodes 11 messenger RNAs (mRNAs) (translated to 13 proteins), 2 ribosomal RNAs (rRNAs) (12S and 16S rRNA), and 22 tRNAs (Gustafsson et al., 2016). The mitochondrial DNA can be used for investigation the genetic diversity and genetic structure in certain animal breeds (Sharma *et al.*, 2015). The cytochrome b (Cyt b) gene is one of genes that are located in the mitochondrial DNA (Stewart and Chinnery, 2015) and can be used to investigate the origin of certain animal species (Satish et al., 2009; Zarringhabaie et al., 2011; Farag et al., 2015). The differentiation factor of Indonesian Ongole cattle breeds (SO and PO) might be found based on the microsatellite markers or the Cyt b gene due to the microsatellite markers can be used to identifying the relationship among livestock breeds (Maretto et al., 2012) and the variation in the Cyt b gene can be used for the comparison study of different animal species (Munira et al., 2016). This research was conducted to identify the differentiation factor of Indonesian Ongole cattle breeds (SO and PO) based on 12 microsatellite markers and Cyt b gene polymorphisms.

Materials and Methods

Blood sample and DNA collection

A total of 50 heads of cattle including the SO cattle (n=25: all individual cattle samples belonged to several private farmers in the Sumba Island) and the PO cattle (n=25; all individual cattle samples belonged to Research Center for Biotechnology farm in West Java) were used for the blood sampling purpose. Blood samples (3-5 mL) were taken from the coccygeal veins using Venoject and collected in Vaccutainer tubes containing an anticoagulant. The blood samples were used in the DNA extraction process using the Genomic DNA Mini kit (Geneaid Biotech Ltd., Taiwan) following the manufacturer's protocol. A total of 12 microsatellite-labeled primers (part of the 30 primers recommended by Food and Agriculture Organization of the United Nations (FAO)) were used in the polymerase chain reaction (PCR) process (primers sequence, annealing temperature, the range of PCR product size, and label used were based on Agung et al. (2015)). Amplification of the Cyt b gene was performed using primers based on Hartatik et al. (2015) i.e. forward (5'-aaaaaccaccgttgttattcaacta-3') and reverse (5'-gcccctcagaatgatatttgtcctca-3').

DNA amplification

The PCR reagents are composed of: KAPA2G Robust Hot Start Ready Mix PCR Kit (Kapa Biosystems, Cape Town, South Africa), forward and reverse primers (200 ng/ μ L), DNA samples (5-50 ng/ μ L), and H₂O up to 25 μ L final volume. The PCR program was set as follows: denaturation at 94°C for 5 minutes; followed by 35 cycles of denaturation at 94°C for 30 seconds, annealing 58°C to 64°C (depending on the primers) for 45 seconds, extension at 72°C for 45 seconds; and a final extension at 72°C for 5 minutes on Mastercycler® Gradient (Eppendorf, Hamburg, Germany). The PCR products were then visualised by electrophoresis process (1% agarose gel, SyBr® staining, and captured in GBOX documentation System (Syngene, UK)).

Allele and haplotype identification

Multiplex DNA fragment analysis was conducted afterwards for allele identification. The multiplex DNA fragment analysis was conducted in the 1st BASE Laboratory, Malaysia. The haplotype identification was conducted using restriction fragment length polymorphism (RFLP) analysis with three restriction enzymes i.e. Hinfl, Haelll, and Xbal. The use of Hinfl, Haelll, and Xbal enzymes in this study were based on Hartatik et al. (2015), Farag et al. (2015), and Mohamad et al. (2009) respectively. The reagents for RFLP analysis were composed of: 3 µl PCR products, 1.4 µl H₂O, and 1 unit (± 0,6 µl) of restriction enzyme Hinfl, Haelll, or Xbal including its buffer (New England Biolabs, USA). The reagents were incubated at 37°C for 1 hour, and it was followed by electrophoresis process. The restriction sites were as follows: GIANTC, GGICC, and TICTAGA for Hinfl, HaeIII, and Xbal enzymes respectively.

Data analysis

Data of allele's size (unit in base pairs) were generated using the multiplex DNA fragment analysis. The data was processed using CONVERT version 1.3.1 (Glaubitz, 2004) to convert the size of alleles observed for each individual sample to assure suitability for further data analysis. The converted data was processed using POPGEN version 1:32 program (Yeh and Boyle, 1997) to generate observed number of alleles (n_A) , effective number of alleles (n_e) , observed heterozygosity value (H_o), expected heterozygosity value (He), and allele frequency. The converted data was also processed using CERVUS version 3.0.7 program (Kalinowski et al., 2007) to obtain the polymorphism information content (PIC) value. The haplotypes data were generated using PCR-RFLP analysis with three restriction enzymes. The PCR-RFLP products were visualised by electrophoresis process. Individual cattle haplotype was determined based on the differences in the number and size of the visualised bands. The frequency of the haplotype was calculated using MS Excel 2007 program based on Nei and Kumar (2000): $\chi_{ii} = (n_{ii}/N)$ for haplotype frequency, where: χ_{ii} = frequency of iith haplotype; n_{ii} = number of individuals with ii haplotype; N = number of samples.

Result and Discussion

Based on allele identification using multiplex DNA fragment analysis, twelve microsatellite loci in this study revealed high polymorphism, and 199 alleles were detected with 82 alleles in the SO cattle and 117 alleles in the PO cattle. Based on the allele distribution (Table 1 and Table 2), the TGLA122 locus has the highest n_A value in the SO cattle while the TGLA122 and

Loci	Allele	Allele frequency	Loci	Allele	Allele frequency	Loci	Allele	Allele frequency
INRA023	197	0,080	SPS113	131	0,160	TGLA126	111	0,020
	199	0,040		133	0,220		117	0,140
	201	0,100		135	0,040		119	0,040
	203	0,100		137	0,340		123	0,320
	205	0,020		139	0,160		125	0,280
	209	0,060		141	0,040		127	0,200
	211	0,020		147	0,020	TGLA227	78	0,780
	215	0,580		157	0,020		80	0,040
CSSM66	178	0,180	SPS115	242	0,180		84	0,040
	180	0,040		244	0,440		86	0,020
	182	0,040		246	0,060		88	0,020
	196	0,020		250	0,060		92	0,020
	198	0,020		252	0,080		94	0,020
	220	0,700		254	0,060		96	0,020
ILSTS006	292	0,060		258	0,020		100	0,040
	294	0,500		262	0,020	ETH225	135	0,396
	296	0,240		264	0,080		139	0,042
	298	0,160	TGLA122	136	0,160		143	0,062
	300	0,020		140	0,040		145	0,021
	302	0,020		142	0,060		149	0,021
BM1824	181	0,200		144	0,120		155	0,458
	183	0,560		152	0,280	TGLA53	135	0,805
	185	0,160		154	0,100		137	0,083
	189	0,020		158	0,020		139	0,028
	195	0,020		160	0,020		141	0,028
	197	0,020		162	0,180		161	0,056
	199	0,020		164	0,020	BM1818	262	0,240
							264	0,760

Table 1. Alleles distribution and its frequency based on 12 microsatellite loci in the SO cattle breed

bold=the alleles that was not found in the PO cattle breed.

Table 2. Alleles distribution and its frequency based on 12 microsatellite loci in the PO cattle breed

Loci	Allele	Allele frequency	Loci	Allele	Allele frequency	Loci	Allele	Allele frequency
INRA023	195	0,040	SPS113	131	0,060	TGLA227	71	0,062
	197	0,200		133	0,100		77	0,542
	199	0,080		135	0,060		79	0,084
	201	0,040		137	0,220		81	0,062
	203	0,100		139	0,120		83	0,021
	207	0,100		141	0,060		87	0,021
	209	0,080		143	0,060		91	0,062
	211	0,020		145	0,080		93	0,042
	215	0,320		147	0,040		99	0,104
	219	0,020		149	0,180	ETH225	128	0,020
CSSM66	178	0,160		151	0,020		134	0,100
	180	0,180	TGLA53	133	0,033		136	0,060
	182	0,020		135	0,534		138	0,060
	184	0,020		137	0,067		140	0,020
	188	0,020		141	0,033		142	0,060
	192	0,040		143	0,067		144	0,040
	196	0,020		149	0,067		146	0,040
	198	0,020		153	0,033		150	0,100
	220	0,520		159	0,033		154	0,400
ILSTS006	276	0,022		161	0,033		156	0,060
	284	0,022		163	0,067		158	0,020
	286	0,022		165	0,033		164	0,020
	288	0,022	SPS115	242	0,180	BM1824	177	0,020
	290	0,108		244	0,420		181	0,360
	292	0,022		246	0,200		183	0,340
	294	0,326		248	0,040		185	0,120
	296	0,174		252	0,100		191	0,140
	298	0,282		254	0,060		195	0,020
TGLA122	134	0,020	TGLA126	103	0,042	BM1818	248	0,040
	136	0,120		107	0,021		256	0,040
	140	0,020		111	0,042		258	0,020
	142	0,120		115	0,063		260	0,100
	144	0,040		117	0,208		262	0,280
	146	0,040		119	0,146		264	0,240
	148	0,040		121	0,146		266	0,080
	150	0,060		123	0,062		268	0,020
	152	0,160		125	0,083		270	0,180
	154	0,180		127	0,125			
	158	0,040		129	0,062			
	160	0,020						
	162	0,149						

bold=the alleles that was not found in the SO cattle breed.

ETH225 were the loci with highest n_{A} value in the PO cattle.

The TGLA227 locus in the SO cattle breed has an even-numbered allele size characteristic (e.g. alleles 78, 80, etc.), whereas in the PO cattle breed it was odd-numbered (e.g. 71, 77, etc.). In contrast, the ETH225 locus has an odd-numbered allele size (e.g. alleles 135, 139, etc.) in the SO cattle breed, but it has even-numbered allele size (e.g. alleles 128, 134, etc.) in the PO cattle breed. These results were in agreement with Agung et al. (2015), who reported the odd-numbered alleles in the ETH225 locus and the even-numbered alleles in the TGLA227 locus. However, due to the limited number of samples in this study, a further investigation using a great number of samples for each cattle breed that represents the population of the SO and PO cattle breeds in Indonesia needs to be conducted.

Based on the alleles variation found in the SO and PO cattle, there were several specific locus or allele candidates. The TGLA227 and ETH225 were specific locus candidates which are different in the size and the number of alleles in the SO and PO cattle breeds. This is an indication that the TGLA227 and ETH225 loci might be used to separate the SO and PO cattle breeds. The specific locus in certain cattle breeds was also reported in the Simmental cattle breed. The TGLA53 allele 168 was a specific allele candidate for the Simmental purebred cattle, and the TGLA122 allele 181 was a specific allele candidate for the Simmental crossbred (Agung *et al.*, 2016).

The highest H_0 value in the SO cattle breed population was 1.00 (SPS113) and the lowest was 0.16 (BM1818). Meanwhile, the highest H_0 value in the PO cattle breed population was 0.92 (SPS113) and the lowest was 0.44 (ILSTS006) (Table 3). The H_0 value can be used for detecting the level of genetic diversity and inbreeding process within a population (Cervini *et al.*, 2006). Unfortunately, the 12 microsatellite markers in the SO cattle and PO cattle in this study mostly were have low H_0 value and can be interpreted that the level of genetic diversity was low. However, the high level of genetic diversity in the SO and PO cattle population were represented by TGLA122, ETH225, and SPS113 loci that have high H_0 value.

The TGLA122 locus has the highest PIC value in SO cattle (PIC=0.81) and PO cattle (PIC=0.87). Meanwhile, the lowest PIC value in the SO cattle was 0.30 (BM1818) and in the PO cattle was 0.63 (CSSM66). The PIC value at 12 microsatellite loci in the PO cattle breed population in this study was more than 0.5 (PIC>0.5). Hence, every locus in this study was highly informative for detecting the level of genetic diversity in the PO cattle population. Meanwhile, there were four microsatellite loci in the SO cattle breed that have the PIC value less than 0.5 (PIC<0.5). As the result, not every locus in this study can be used to detect the level of genetic diversity in the SO cattle population. In addition, Czerneková et al. (2006) reported that low PIC value can be interpreted that certain conservation process has been carried out in a particular population.

Compared with the results from other studies that also used microsatellites which were mostly identical with our study, some differences can be observed. The differences may be in the minimum and maximum sizes of allele, the number of observed alleles, and also the PIC values. The H_0 and PIC values in the SO cattle breed in this study for TGLA53, TGLA227, and BM1818 loci were low. This condition was the same with several of *Bos indicus* cattle i.e. the

Locus	n _A	n _e	H₀	He	PIC	n _A	n _e	H₀	He	PIC
		SO					PO			
BM1824	7	2,63	0,32	0,63	0,57	6	3,57	0,52	0,74	0,67
ILSTS006	6	2,96	0,32	0,68	0,61	9	4,34	0,44	0,79	0,74
TGLA126	6	4,13	0,52	0,77	0,72	11	8,06	0,83	0,90	0,86
TGLA53	5	1,51	0,28	0,35	0,32	11	3,24	0,73	0,72	0,68
TGLA227	9	1,63	0,36	0,39	0,38	9	3,07	0,58	0,69	0,66
TGLA122	10	5,98	0,80	0,85	0,81	13	8,50	0,88	0,90	0,87
ETH225	6	2,68	0,92	0,64	0,56	13	5,02	0,64	0,82	0,79
INRA023	8	2,71	0,56	0,64	0,61	10	5,58	0,88	0,84	0,80
SPS113	8	4,56	1,00	0,80	0,75	11	7,81	0,92	0,89	0,86
SPS115	9	3,99	0,68	0,76	0,73	6	3,79	0,52	0,75	0,70
BM1818	2	1,57	0,16	0,37	0,30	9	5,30	0,48	0,83	0,79
CSSM66	6	1,90	0,60	0,48	0,44	9	3,01	0,52	0,68	0,63

Table 3. Characterization of the twelve microsatellite markers in the SO and PO cattle breeds

 n_A =observed number of allele; n_e =effective number of allele; H_o =observed heterozygosities; H_e =expected heterozygosities; PIC=polymorphism information content.

Hissar cattle (Rehman and Khan, 2009), Nellore cattle (Cervini *et al.*, 2006), and Punganur cattle (Kesvulu *et al.*, 2009) but contrast with Brahman cattle (Riojas-Valdes *et al.*, 2009). In consequence, the TGLA53, TGLA227, and BM1818 loci were not suitable to investigate the genetic diversity in the SO cattle population. However, the TGLA227 locus was specific locus candidate that might be used to separate the SO and PO cattle breeds.

Based on the mitochondrial DNA analysis results, the size of the PCR product is about 464 base pairs (bp) and the same with the size reported by Hartatik *et al.* (2015). The haplotypes of the mitochondrial DNA were identified based on the differences in size and the number of bands (RFLP product) that appear in the visualisation process. There were two haplotypes for each restriction enzyme (Hinfl, HaeIII, or Xbal) in the SO and PO cattle breed population based on the RFLP analysis. The A and B haplotypes were detected using Hinfl enzyme (Figure 1), the C and D haplotypes were detected using HaeIII enzyme (Figure 2), and the X and Y haplotypes were detected using Xbal enzyme (Figure 3).

Figure 1. The haplotype visualisation based on the RFLP analysis using the Hinfl enzyme (M=100 bp ladder size standard; bp=base pair; A=A haplotype; B=B haplotype).

Figure 2. The haplotype visualisation based on the RFLP analysis using the HaeIII enzyme (M=100 bp ladder size standard; bp=base pair; C=C haplotype; D=D haplotype).

Figure 3. The haplotype visualisation based on the RFLP analysis using the Xbal enzyme (M=100 bp ladder size standard; bp=base pair; X=X haplotype; Y=Y haplotype).

Prood	n	Haplotype frequency							
bieeu	11	А	В	С	D	Х	Y		
SO	25	1,00	0,00	1,00	0,00	1,00	0,00		
PO	25	0,40	0,60	0,64	0,36	0,00	1,00		
Total	50	0,70	0,30	0,82	0,18	0,50	0,50		

Table 4. The haplotypes frequency in the SO and PO cattle breeds

n=individuals haplotyped.

Based on the haplotype data of the mitochondrial DNA (Table 4), the B (Hinfl), D (HaeIII), and Y (XbaI) haplotypes were found only in the PO cattle breed samples. Meanwhile, the X (XbaI) haplotype was found only in the SO cattle breed samples. According to the frequency value of the X and Y haplotypes in the SO and PO cattle breeds, these haplotypes were very potential to become a differentiation factor between the SO and PO cattle breeds.

Conclusions

It can be concluded that the TGLA227 and ETH225 loci (based on microsatellite markers) and the B, D, X, and Y haplotypes (based on the mitochondrial DNA) can be considered as the differentiation factors between the SO and PO cattle breeds.

Acknowledgments

This research was funded by Research Center for Biotechnology-Indonesian Institute of Sciences through DIPA UNGGULAN LIPI 2017 scheme. The authors are grateful to Valentine Kheng for technical supports.

References

- Agung, P. P., S. Anwar, A. S. Wulandari, A. Sudiro, S. Said, and B. Tappa. 2015. The potency of Sumba Ongole (SO) cattle: a study of genetic characterization and carcass productivity. J. Indonesian Trop. Anim. Agric. 40: 1-78.
- Agung, P. P., F. Saputra, W. A. Septian, Lusiana, M. S. A. Zein, S. Sulandari, S. Anwar, A. S. Wulandari, S. Said, and B. Tappa. 2016. Study of genetic diversity among Simmental cross cattle in West Sumatra based on microsatellite markers. Asian-Australas. J. Anim. Sci. 29: 176-183.
- Cervini, M., F. Henrique-Silva, N. Mortari, and E. Matheucci Jr. 2006. Genetic variability of 10 microsatellite markers in the characterization of Brazilian Nellore cattle (*Bos indicus*). Genet. Mol. Biol. 29: 486-490.
- Czerneková, V., T. Kott, G. Dudková, Z. Sztankóová, and J. Soldát. 2006. Genetic diversity between seven Central European cattle breeds as revealed by microsatellite analysis Czech J. Anim. Sci. 51: 1-7.

- Farag, M. R., T. S. Imam, and K. Dhama. 2015. Identification of some domestic animal species (camel, buffalo and sheep) by pcrrflp analysis of the mitochondrial cytochrome b gene. Adv. Anim. Vet. Sci. 3: 136-142.
- Glaubitz, J. C. 2004. Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes. 4: 309-310.
- Gustafsson, C. M., M. Falkenberg, and N-G. Larsson. 2016. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85: 9.1–9.28.
- Haasl, R. J. and B. A. Payseur. 2012. Microsatellites as targets of natural selection. Mol. Biol. Evol. 30: 285-298.
- Hardjosubroto, W. 2004. Alternative policy in managing sustainable genetic resources of local beef cattle for national livestock breeding system. Wartazoa 14: 93-97.
- Hartatik, T., W. B. P. Putra, S. D. Volkandari, and Sumadi. 2015. Polymorphism of mtDNA Cytochrome b Gene of Local Cattle in Indonesia. J-SustaiN 3: 21-24.
- Kalinowski, S. T., M. L. Taper, and T. C. Marshall. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106.
- Kesvulu, P. C., G. N. Rao, A. S. N. Ahmed, and B. R. Gupta. 2009. Molecular genetic characterization of Pungular cattle. Taminaldu J. Vet. Anim. Sci. 5: 179-185.
- Ladoukakis, E. D. and E. Zouros. 2017. Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. J. Biol. Res. (Thessalon). 24: 1-7.
- Maretto, F., J. Ramljak, F. Sbarra, M. Penasa, R. Mantovani, and A. Ivankovic. 2012. Genetic relationships among Italian and Croatian Podolian cattle breeds assessed by microsatellite markers. Livest. Sci. 150: 256-264.
- Ministry of Agriculture of the Republic of Indonesia. 2014. Ministerial Decree No. 427>Kpts>SR.120>3>2014 tentang penetapan rumpun sapi Sumba Ongole. http:>>bibit.ditjennak.pertanian.go.id>conte nt>sapi-sumba-ongole. Accesed 23 August 2017.
- Mohamad, K., M. Olsson, H. T. A. van Tol, S. Mikko, B. H. Vlaming, G. Andersson, H. Rodriguez-Martinez, B. Purwantara, R. W.

Paling, B. Colenbrader, and J. A. Lenstra. 2009. On the origin of Indonesian cattle. PLoS ONE 4: e5490.

- Munira, S., F. T. Jahura, Md. M. Hossain and M. S. A. Bhuiyan. 2016. Molecular detection of cattle and buffalo species meat origin using mitochondrial cytochrome b (Cyt b) gene. Asian J. Med. Biol. Res. 2: 177-182.
- Nei, M. and S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
- Riojas-Valdes, V. M., J. C. Gomes-de-la-Fuente, J. M. Garza-Lozano, D. C. Gallardo-Blanco, J. N. De Tellitu-Schutz, A. Wong-Gonzales, G. Davalos-Aranda, and J. A. Salinas-Melendez. 2009. Exclusion probabilities of 8 DNA microsatellites in 6 cattle breeds from Northeast Mexico. J. Anim. Vet. Adv. 8: 62-66.
- Radko, A. 2010. Application of a complementary set of 10 microsatellite DNA markers for parentage verification in Polish Red cattle. Ann. Anim. Sci. 10: 9-15.
- Rehman, M. S. and M. S. Khan. 2009. Genetic diversity of Hariana and Hissar cattle from Pakistan using microsatellite analysis. Pakistan Vet. J. 29: 67-71.
- Rutledge, L. Y., C. J. Garroway, K. M. Loveless and B. R. Patterson. 2010. Genetic differentiation of eastern wolves in Algonquin Park despite bridging gene flow between coyotes and grey wolves. Heredity 105: 520-531.
- Satish, A. Kumar, Y. Singh, Minakshi and G. Prasad. 2009. Cytochrome- b gene based PCR for identification and differentiation of cooked meat of sheep, goat, cattle, pig and poultry. Haryana Vet. 48: 53-57.

Seo, J. H., J. H. Lee, and H. S. Kong. 2017. Assessment of genetic diversity and phylogenetic relationships of Korean native chicken breeds using microsatellite markers. Asian-Australas. J. Anim. Sci. 30: 1365-1371.

Microsatellite Markers and Mitochondrial DNA

- Sharma, R., A. Kishore, M. Mukesh, S. Ahlawat, A. Maitra, A. K. Pandey, and M. S. Tantia. 2015. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers. BMC Genetics 16: 1-12.
- Stevanovic, J., Z. Stanimirovic, V. Dimitrijevic, and M. Maletic. 2010. Evaluation of 11 microsatellite loci for their use in paternity testing in Yugoslav Pied cattle (YU Simmental cattle). Czech J. Anim. Sci. 55: 221-226.
- Stewart, J. B. and P. F. Chinnery. 2015. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet.16: 530-542.
- Sudrajad, P. and S. Subiharta. 2012. Karakter fenotipik sapi betina Peranakan Ongole (PO) kebumen. Widyariset 17: 283-290.
- Suyadi, S., L. Hakim, S. Wahjuningsih, and H. Nugroho. 2014. Reproductive performance of Peranakan Ongole (PO)-and Limousin x PO Crossbred (Limpo) cattle at different altitude areas in East Java, Indonesia. J. Appl. Sci. Agric. 9: 81-85.
- Yeh, F. C. and T. J. B. Boyle. 1997. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg. J. Bot. 129: 157-163.
- Zarringhabaie, G. E., N. Pirany and A. Javanmard. 2011. Molecular multiplex PCR. Afri. J. Biotechnol. 10: 16461-16465.