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TRADING BEHAVIOR AND ASSET PRICING
UNDER HETEROGENEOUS EXPECTATIONS

R. Agus Sartono

This research models trading behavior and examines the impact
of heterogeneous expectations on asset prices. We extend Kyle’s
(1985) one-period model to two-period model. The model shows that
the informed trader takes into account not only the private informa-
tion but also the pricing function. The price is an increasing function
of the volatility of the asset value and decreasing in the volatility of
uninformed traders’ demand. The costly information acquisition
has an impact on the optimum demand but it has no direct impact
on the price.

We find the market depth is a linear function of the volatility of
the uninformed traders and a weighted average of the total error
variance of information. The depth is also decreasing in the
volatility of the cash flow innovations. This argument is in line with
the second finding, when the volatility of cash flow innovations
increases, the value of risky asset becomes more volatile, and as a
result the bigger are the advantages of having private information.
Our research raises some questions for further investigation. We
indirectly assume that the informed traders make a profit at the
expense on the uninformed traders. The question is why the
uninformed traders willing to face losses? What happen if there are
n informed traders who have diverse information?
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Research Background

Homogeneous expectations, cost-
free information and risk aversion are
crucial assumptions underlying the
capital asset pricing model, hereafter
called CAPM. As the standard model
of financial markets, the CAPM as-
sumes homogeneous probability ex-
pectations:1 individuals have the same
information, interpret it in the same
manner and draw the same conclu-
sions. However, in the real market,
even when individuals have the same
information, they will most likely ana-
lyze and interpret it in different ways
and come up with different conclu-
sions. Empirical studies of the CAPM
are typically characterized by the as-
sumption of mean variance expecta-
tions derived from historical data and
risk-averse traders. Roll (1977) raised
some serious questions about the va-
lidity of the homogeneous expectation
assumption and the testability of the
CAPM. A valid test requires complete
knowledge of the composition of the
true market portfolio. This implies
that all assets must be included in the
test. Despite its many critics, the CAPM

has drawn a great deal of attention
from practitioners as well as academic
communities within the last three de-
cades. The CAPM has proved to be a
preferable approach for pricing assets

The Efficient Market Hypothesis
(EMH) has become another major de-
bate subject among academics and fi-
nancial professionals in the last three
decades. The EMH states that a mar-
ket is said to be informationally effi-
cient if at any given time, security
prices fully reflect all available infor-
mation and the actual price of a secu-
rity is a good estimate of its intrinsic
value (Fama 1970). Thus, in an
informationally efficient market it is
impossible to make profits on the basis
of public and private information. In
reality, the markets are neither effi-
cient nor completely inefficient. All
markets are efficient to a certain extent
and some more so than others.

The empirical studies indicate that
there are quite a lot of anomalies such
as size effect, end-of-the-year effect,
price-to-book ratio effect, and price
reversal that can not be justified by the
EMH.2 There is continuing disagree-

1 The models of both William F. Sharpe (1964) and John Lintner (1965) assumed that agents
agree on mean and variance and the only risk that should be compensated is the systematic risk
which can not be eliminated by diversifying investment in the portfolio. Heterogeneous belief or
divergence opinion is used with the same purpose as heterogeneous expectations.  It captures how
traders collect, analyze and interpret different information about fundamental value of assets
differently.

2 For more details, here is a short list of some anomalies: dividend cut and omissions (Michaely
et al. 1995); stock repurchase (Lakonishok and Vermaelen 1990); stock return and weekend effect
(French 1980); book to market value equity (Fama and French 1992); the January effect (Rozeff
and Kinney 1976;  and Keim 1983); size effect (Banz 1981, and Reinganum 1983); P/E effect (Basu
1977); price reversal (DeBondt and Thaler 1985, and Jegadesh and Titman 1993); and equity
premium puzzle (Mehra and Prescott 1985).
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ment as to whether the different anoma-
lies indicate that the market is ineffi-
cient or whether the anomalies stem
from a mathematical modeling prob-
lem, a sampling error, or misinterpre-
tation and misuse by practitioners and
researchers. Fama (1991) admits that
zero information cost is a necessary
condition for an efficient market. Since
information is cost-free, traders are
assumed to have the same informa-
tion, and the price system leads to
perfect aggregation of information.
Whenever prices perfectly aggregate
all information, private information is
useless and traders could infer infor-
mation from the prices.

If this is the case, there is no
reason for traders to spend a single
euro to get additional information. If
all available information is reflected in
the asset prices, there is no incentive
for information acquisition. Grossman
(1976) argues that the cost-free infor-
mation is not only a sufficient, but also
a necessary condition. In another pa-
per, Grossman and Stigliz (1976, 1980)
and Grossman (1978) argue that the
capital market can not even begin to be
informationally efficient if the acquisi-
tion of information is costly.

The main point of the argument is
that under the costly information as-
sumption, if prices fully reveal all
information, traders may not be able to
earn a return on their investment in
information. If the price system is a
perfect aggregator of information, it
eliminates the private incentive to col-
lect information. All traders prefer to
obtain the available information at no

cost by inferring it from the market
prices rather than by acquiring it di-
rectly at cost. If there is no incentive
for information gathering, the perfect
competitive market will break down;
there is no equilibrium since no one
collects costly information. If no one
collects the information, how can prices
reflect the information; and the prices
will not reveal all the information.
Then some traders may realize that
they would be better-off if they were
better informed. In equilibrium, the
price must contain noise, a disturbance
that prevents traders from learning all
the information from the price and
provides incentive for information ac-
quisition. Informed traders can then
hide and maximize their advantage of
having private information. Otherwise,
the markets break down.

In a competitive market, if traders
have heterogeneous information, then
their demand for risky asset may re-
veal or partially reveal their informa-
tion. As in Grossman’s (1976) model
with two types of risk-averse informed
and uninformed traders, if the price is
high then the uninformed can infer that
this may be due to the informed traders
having good news regarding the ex-
pected payoff of assets. But whenever
the price is low, this implies that in-
formed traders possibly just received
bad news. Assuming that all traders
are rational, price is a sufficient statis-
tic for all the signals observed by
traders. Knowing the equilibrium price
is the same as observing all the infor-
mation, and private information is use-
less. This argument enhances the para-
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dox that price can incorporate the
traders’ information only if traders
take it into account in determining
their demand. Meanwhile, if they know
the equilibrium price, they will disre-
gard their information in favor of the
equilibrium price.

Hellwig (1980) and Grossman and
Stiglitz (1980) attempted to solve the
asset pricing paradox by introducing
the supply of risky assets and liquidity
traders as random variables. Diamond
and Verrecchia (1981) consider the
random supply of risky assets as noise.
If the supply is uncertain, then the high
price could be due to favorable infor-
mation or the low supply of risky
assets. Price will no longer be per-
fectly informative, and traders should
take into account their own informa-
tion as well as the price. Kyle (1985)
proved that when traders take into
account the effect of their own de-
mands on price, the price is not fully
revealing. It thus provides incentive
for costly information gathering even
if traders are risk-neutral.

Purpose of the Study and
Research Question

Investors or traders spend mil-
lions of euros to gain access to the
increasingly sophisticated forecasting
services of professional security ana-
lysts, who provide earnings forecasts
and statistical analyzes on a firm-by-
firm basis. An analysis can be yearly
or quarterly, for an individual com-
pany or for an entire industry. Infor-
mation is costly, and the main objec-

tive in acquiring costly information is
to have better assessment of assets
value. Traders gather, analyze and in-
terpret information differently, so they
end up with different beliefs regarding
the future pay off or cash flow of
assets. Different beliefs lead to differ-
ent or heterogeneous expectations.

The purpose of this study is to
analyze the impact of heterogeneous
expectations on the asset price. As-
suming that the market is somewhat in-
efficient and that the prices do not fully
reflect all the available information,
being better informed should yield a
higher return. We will extend the one-
period Kyle (1985) model to a two-
period model in an attempt to find
solutions for asymmetric information
in asset pricing. We expect that our
result will answer the Grossman Para-
dox to some extend. Using Kyle’s
(1985) framework, we will focus on
the strategic action of an informed
trader who has better information than
uninformed traders. Information is
costly and traders are assumed to be
risk-neutral, so there will be no risk
sharing problems among traders and
there must be incentives for traders
who choose to be informed.

Admati and Pfleiderer (1988) sug-
gest there are informed traders, unin-
formed traders, and liquidity traders.
The informed traders have private in-
formation about cash flow innova-
tions, but they have different error
variance of private information. The
main intention is to see whether the
diverse information that presumably
leads to heterogeneous expectations
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has an impact on the optimum demand
for risky assets. They focus on the
dynamic strategic behavior of informed
and liquidity traders. Informed traders
have private information on the real-
ization value of assets, but the liquidity
traders do not have such information.
The liquidity traders fall into two cat-
egories, discretionary liquidity trad-
ers, who use their own discretion in
timing trades, and non-discretionary
liquidity traders, who do not have
discretion in timing.

The informed trader has lower
error variance of private information
than the uninformed trader. The in-
formed traders are those who have
special knowledge about cash flow
innovations, and who spent a lot of
effort and resources to gather and
analyze information. On the other hand,
the uninformed traders are those who
have no special knowledge about cash
flow innovations, and who make no
effort to gather and analyze informa-
tion. In our scenario, we simply as-
sume that there are constant flows of
uninformed traders coming into the
market. Having a large number of
uninformed traders in the market cre-
ates camouflage for informed traders’
private information. Thus, when some
uninformed traders leave the market,
the other uninformed or liquidity trad-
ers just enter the market. That is true
of the real world, where some num-
bers of rational traders leave the mar-
ket and are replaced by other traders.
Grossman (1976) and Kyle (1985) in-
directly assumed that the uninformed
traders can not buy the market portfo-

lio. That is why they lose to trade with
the informed traders. If the uninformed
traders can buy the market portfolio,
they are guaranteed to earn the average
return.

In fact, traders do spend a lot of
money to gather information. They do
interpret and analyze in different ways,
because they have different informa-
tion processing capacity. As a result
they have different beliefs and hetero-
geneous expectations regarding assets
value. The main question then, does
the private information have an impact
on the equilibrium asset price? How
the price behaves in the equilibrium
using an extended two-period model?
Do the heterogeneous expectations, as
measured by different error variances
of private information, have an impact
on the demand for risky assets? These
questions are at the center of this
research. We intend to answer these
questions by building a mathematical
model.

Brief Overview of Previous
Studies

Lintner (1969) raised the issue of
heterogeneous expectations, and trad-
ers are assumed to be risk-averse. He
proposed a model in which traders
have a different assessment of ex-
pected price and covariance. When
expected futures prices differ among
traders, each trader will hold different
optimal portfolios and different frac-
tions of the portfolio. The pricing
system takes the weighted average of
traders’ portfolio. The expected mar-
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ket prices are a complex weighted
average of individuals’ assessment. In
a purely competitive market, the price
system necessarily and automatically
uses the ideal weight in combining the
separate vector assessment of expected
price of each individual into its com-
posite market estimate price. The best
composite estimate price, the market’s
composite risk aversion and its com-
posite covariance assessment together
determine the market prices. Thus, the
pricing system aggregates the indi-
viduals’ heterogeneous assessment of
future price and covariance into a
single market price.

It is Kyle (1985) who starts devel-
oping the asset price under asymmet-
ric information. He assumes there is
one risk-neutral insider or informed
trader, market makers, and noise trad-
ers. The market maker knows only the
sum of the demands of the informed
and noise traders, but does not know
them individually, and uses this infor-
mation to set the market price and then
take a position to clear the market. It is
assumed that market making is a per-
fectly competitive profession, so that
the market makers set the price such
that, given the total order, their profit
at the end of the period is expected to
be zero. The price is a linear function
of the total order flows. Kyle proved
that insider, as an informed trader,
makes a positive profit by exploiting
his power monopoly optimally in a

dynamic context, where noise trading
provides camouflage, which cancels
his trading from market makers. To
simplify the analysis, the noise traders
are assumed to be the same as unin-
formed noise traders.3  In this model,
the informed trader is assumed to be
risk-neutral who maximize the ex-
pected profit. The price determined by
the market maker is assumed to be
equal to the expectation of the liquida-
tion value condition on the market
maker’s information set.

Gorton and Pennacchi (1993) ex-
tended the one-period Kyle model to a
two-period model. They focused on
the behavior of uninformed traders in
an attempt to minimize loss trading
with informed traders. In the first
period the company sells share in ex-
change for capital. Some uninformed
traders face liquidity needs, become
early consumers and have to trade,
while the rest remain as late consum-
ers. With the existence of forward
markets, the early consumers can sell
their share forward to fulfill their cash
problem. The fully rational uninformed
traders can create composite securities
to minimize their loss. In other papers,
Grossman (1976) and Grossman and
Stiglitz (1980) showed how the hetero-
geneous information of different trad-
ers can be reflected on the equilibrium
price of security. Using two types of
traders who are informed and unin-
formed, they demonstrated how the

3 It is not absolutely correct to assume that the uninformed traders trade based on the noise as
in Black’s (1986) concept. However, to simplify the research, we use the uninformed traders,
liquidity traders and noise traders interchangeably.
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price system transmits information
from informed to uninformed traders.
Nevertheless, if the price system ag-
gregates perfectly private information,
then it eliminates the incentive for
traders to collect information.

In another attempt to model the
costly information on asset price, Dia-
mond and Verrecchia (1981) intro-
duced noise by assuming that traders
have an initial random endowment of
the asset. If the supply to rational
traders is not known with certainty,
then a high price could be either the
consequence of traders receiving fa-
vorable signals or the effect of low
supply. Price is no longer perfectly
informative about the traders’ infor-
mation set, and so each trader will base
his belief about the likely outcome on
both price and his own piece of infor-
mation. Jackson (1991) analyzed the
equilibrium, price formation and the
value of private information. He
showed that if the price formation
process is modeled explicitly and trad-
ers are not price takers, then it is
possible to have equilibrium with fully
revealing prices and costly informa-
tion acquisition. He used a similar
model as Grossman (1976) with two
types of traders but under the assump-
tion of risk-neutral traders. He dropped
the price taking assumption, because it
is impossible to have a fully revealing
price if information acquisition is
costly. Equilibrium in costly informa-
tion acquisition is ex ante Pareto inef-
ficient, since resources are lost in the
acquisition of information. In his set-
ting, information is only important in

determining the distribution of wealth
among identical risk-neutral traders;
therefore, it is not surprising that costly
information acquisition is inefficient.
He proved that if the price formation is
explicit and traders influence the prices,
then it is possible to have fully reveal-
ing prices.

Jackson and Peck (1997) exam-
ined price formation in a simple static
model with asymmetric information
and the advantage of being informed
traders. They showed that with costly
information acquisition, the price ex-
hibits a “V” shape as a function of the
cost of information. When all traders
are either informed or uninformed, the
price is highest, and lower when only
some traders are informed. They built
a model in which there is an infinite
number of traders. Thus, the price
formation is competitive and no single
trader can influence the price. The
rationale of the “V” shape of expected
prices is straightforward; when the
cost of information acquisition is low,
everyone chooses to be informed; but
as the information cost increases, the
fraction of informed traders decreases.
When the information cost exceeds the
maximum potential benefit from being
informed, no one chooses to be in-
formed. The benefit of being informed
at the beginning declines as the num-
ber of informed traders increases and
at some point the benefit of being
informed increases.

William (1977) introduced an al-
ternative model in pricing capital as-
sets under heterogeneous beliefs and
risk-aversion. Using his model, he
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proved that beta is no longer a com-
plete measure of risk. Figlewski (1982)
proved that information level or diver-
sity will affect investors’ beliefs or
expectations. Thus, different inves-
tors may acquire different informa-
tion, process it in different ways and
respond differently. In another study
based on a computer simulation model,
Schredelseker (1997) developed a
model that indicates that information
does have a negative value and does
not supports the empirical evidence
that investors are willing to spend a lot
of money to get better information in
advance. He makes an experimental
simulation using n laplace-coins in a
one-period pure exchange economy
with one security traded and shows
that the information level affects the
gain and losses on the transaction. For
a less informed trader it is rational to
switch from an active to a passive
investment strategy, and in a market
that is less than perfectly efficient it
pays to be very well informed.

Importance and the
Uniqueness of this Study

The current study is important
because to date not much research has
been done on this issue. In this study,
we take directly into our model the
information cost and we assume that
traders are risk-neutral. In our premise,
the market is somewhat inefficient and
there must be a reason for traders to
spend a large amount of money on
information. Information must have
an economic value, and it must be

worth being better informed traders.
The result possibly solves the equity
premium puzzle and enhances asset-
pricing in the asymmetric informa-
tion.

Research Method and
Modeling

The previous part presented the
literature review as well as the empiri-
cal research related to the heteroge-
neous expectations and asset price.
This part will analyze the mathemati-
cal model. Let us begin with the as-
sumption, followed by the solution of
equilibrium price and finalized with
implication and discussion. This re-
search takes a similar approach as in
Kyle (1985); the difference is that we
extend the Kyle model into two peri-
ods with an informed risk-neutral trader
and uninformed traders. We will make
a two-period model in the secondary
market and try to find out the impact of
asymmetric information on the asset
prices. The informed trader has pri-
vate information about expected real-
ization value of risky asset and has to
trade at a price which does not yet
reflect the information.

The Optimum Demand and
Equilibrium Price

Model setup

Suppose there is a risky asset in
the market and there is a risk-neutral
informed trader who has information
about the expected realization value of
a risky asset at the end of the first and
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second periods. There is a risk-neutral
uninformed trader who has to trade for
liquidity reasons or consumption shock.
Let us assume that the time span is very
short. Therefore, the expected realiza-
tion value of risky asset in both periods
is the same and there is no discounting
problem. The informed trader demands
a risky asset on the basis of private
information that is not known to the
other trader when the trade takes place.

The total order flow in the first
period consists of the informed trader’s
order and the uninformed trader’s or-
der. The informed trader’s strategy is
to maximize profit given his private
information. The total order flow in
the second period comes from the
informed trader and the uninformed
trader as well. The crucial assumption
is that the uninformed trader must not
to lose money per se, and is restricted
in his ability to buy the market portfo-
lio and has no access to the financial
market. Otherwise, it makes possible
for him to earn at least as much as risk
free rate (Kyle 1985). If he has access
to the financial market, he is able to
use his security as collateral for a loan
at a risk-free rate. This assumption is
debatable since large institutional com-
panies are able to get access to the
financial market at very low interest
rates.4

The informed trader is not al-
lowed to submit market order which is
condition on the demand of the unin-
formed trader; nor is he allowed to

submit a strategic untruthful order to
the market maker. The informed trader
will sell an asset and invest in another
only if he has private information that
the former asset is relatively overval-
ued at current market prices. This is a
little bit different from the argument
that prices are not fully revealing. As
in Kyle’s (1985) model, the demand
for the risky asset rises, because the
informed trader received good news or
because there are large liquidity de-
mands. The informed trader submits a
market order given his private infor-
mation to maximize the expected profit.
The risk-neutral informed trader will
purchase any amount of risky assets
when the asset price equals the expec-
tation of its fundamental value.

The two-period model is an exten-
sion of Kyle’s (1985) model, where
trading takes place in the first and
second periods. The informed and un-
informed traders submit market orders
to the market makers in both periods as
follows:

111

~~~
uxy  (1)

222

~~~
uxy  (2)

The informed trader has private
information regarding the expected
realization value of a risky asset in the
two periods. Since the time span is
assumed to be very short, the expected
realization value would be the same,
v

1
= v

2
. The demand of the uninformed

4 Many thanks to Klaus Schredelseker and Matthias Bank for pointing out this plausible
argument and for giving us a nice clue.

˜ ˜

111

~~~
uxy 
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trader in the first and the second peri-
ods is u

1
,u

2
 ̃  N(0,

u
2). We assume that

the uninformed trader’s order is inde-
pendent of all other random variables,
and hence nothing can be learned about
the liquidation value of the asset from
the uninformed trader’s orders. The
trading sequence can be seen in the
Figure 1.

Let us assume that the market
makers determine the price at which
they trade the quantity necessary to
clear the market. As a competitive
profession, the expected profit of mar-
ket makers is zero. The asset price
functions for both periods as standard
(Kyle 1985) model is the linear func-
tion of the total order flows as follows:

1101

~
ypP  (3)

2212

~
ypP  (4)

Lambda measures how the mar-
ket maker learns about the liquidation
value of a risky asset from order flows.
The market depth is measured by the
reciprocal of 

1
 and 

2
 for the first and

the second period, respectively. The
depth refers to the ability of the market
to absorb quantity without having a
large impact on price. If a lambda is
small, the market is said to be very
liquid. It means that an increase in
traders’ demand has only small impact
on the price. The profit maximization
strategy of informed traders could be
found using the backward induction
approach, because a Bayesian Nash
equilibrium requires equilibrium strat-
egies to be optimal for each trader
given the rational belief. Thus, the
informed trader will maximize the value
of his private information in both peri-
ods.

Lemma 1: Within the structure above,
the optimum demand of an
informed trader in the first
and the second period is as
follows:
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We use the same backward ap-
proach to find the optimum demand of
the informed trader in the first period.
The informed trader acts strategically
to optimize his superior information.
Now let us substitute the optimum
demand of the second period into the
first period, and we know that the
informed trader faces the same prob-
lem of maximizing his expected profit
as follows:

     2221111
PvxPvxEMax x 

(8)

Proof: Using the backward induction
approach,5 the optimum quan-
tity order of an informed trader
in the first period can be solved
as follows:
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(5)

We know that E [u
2
]= 0; there-

fore, we can solve for x
2
 by taking the

first derivative in respect of x
2
 and

equating it to zero. This gives the
following equation:
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Now let us substitute Equation
(6), the optimum order of the informed
trader in the second period, into Equa-
tion (5) to find the optimum profit, as:
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x2 
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5 Hirth (1999) provide an excellence example of how to use backward induction to find the
optimum demand in a two-period model. In line with the Kyle (1985) approach, he focused on the
insider trading and its effect on market liquidity and information efficiency. He proved that when
the probability of an earlier publication date increases, the insider trades more and the price reflects
more information, but the market liquidity decreases.
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Let us simplify by factoring the
second term of Equation (8) as m = v

2

- p
0
 - 

1
x

1
 and n = 

1
u

1
. So the second

term is equivalent to r = (m - n)2 = m2

+ n2 - 2mn. Keep in mind that E [u
1
]

= 0; if we take the first derivative in
respect of x

1
 and equating it to zero, we

are able to solve for x
1
 as follows:

=

 =

(9)

Let us assume the second term of
Equation (9) as K= v

2
 - p

0
 - 

1
x

1
 thus,

We may also simplify the
second term as L= K2 and

So, the first derivation of
the second term is

Now take the first derivation of Equa-
tion (9) as a whole with respect of x

1
,

and equating it to zero as:
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As we assume that v
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rearrange and simplify as follows:
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Equation (11) shows that the opti-
mum demand in the first period is a
linear function of private information
in the sense of the difference between
the realization value of the risky asset
and the current price. It is obvious that
when the informed trader knows the
realization value would be higher than
the current price, v

1
 > p

0
, he will

demand the risky asset. The higher the
difference between the realization value
and the current price, the greater the
demand of the informed trader would
be. The informed trader not only takes
advantage of his information, but also
considers the market maker’s pricing
strategy in both periods as measured
by lambda.

Market makers’ pricing strategy

The market maker receives the
market order from the informed and
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the uninformed trader and sets up the
price to clear the market. The market
maker knows the total order but not
each order from the trader. As a com-
petitive profession, the market maker
is protected from making a positive
profit. The market maker will adjust
the price whenever the order flow
changes, and we assume that the price
is a linear function of order flows.

Proposition 1: Under the assumption
as set up above, a per-
fect Bayesian Nash
equilibrium in which
the market maker’s
pricing strategy in the
first and second period
is as follows:

and 
2

2

2
2

u

v




 

Proof: The next step is to define 
1
  and


2
 as a measure of how the

market maker learns the real-
ization value from the order
flows. The reciprocal of
lambda measures the market
depth; the smaller lambda is,
the deeper the market would
be. Remember that the market
maker set the price to clear the
market as a linear function of
total order flow. From Equa-
tion (3) we know the price
function as P

1 
= p

0
 + 

1
y

1
; this

is equal to P
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]  solv-

ing for 
1
 as follows,
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(13)

We know that y
1
 = x

1
 + u

1
, and

remember that v
1
 = v

2
; therefore, if we

substitute Equation (11) into the de-
mand function, we have the following
expression.

(14)

The market maker does not know
the realization value of the risky asset
v

1
, he only observes the distribution of

the expected realization value v
1
, thus:
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and

(15)

Following Equation (15) a similar
approach could be used to find 

2
 as we

know the price is a function of total
order flows. Thus, in the second pe-
riod, the function of the asset price is
P

2
 = p

1
 + 

2
y

2
; so P

1
 - p

1
 = 

2
y

2
 and

P
1
= E [v

2  
y

2
]. The similar way fol-

lows,

(16)

Substitute Equation (6) into the
total order flows y

2
 = x

2
 + u

2
 and solve

for variance and covariance of the total
order flows. To find 

2
 we can use a

similar approach where the market
maker only observes the distribution
of the expected realization value of
risky asset v

2
, but does not know the

realization value in the second period.
Therefore, lambda in the second pe-
riod can easily be found as follows:

and

                                        (17)
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We found that the market depth in
the second periods is similar to the
Kyle’ (1985) one-period model. How-
ever, we found that the depth in the
first period is not straight forward,
because lambda in the first period is a
function of the lambda in the second
periods and the first period as well. In
the second periods, the depth is in-
creasing function of the volatility of
the uninformed trader and decreasing
in the volatility of the risky asset. The
market depth is measured by the recip-
rocal of lambda. It measures how the
demand changes affect the price. The
bigger the lambda is, the smaller the
market depth would be. Thus, when

˜˜

˜˜

˜ ˜

˜



29

Sartono —Trading Behavior and Asset Pricing under Heterogeneous Expectations

the volatility of the uninformed trader’s
demand increases, the informed trader
is better-off because he is able to
disguise his private information from
the price.

Equilibrium price under costly
information

Up to this point, the information
cost is not yet considered. Let us
assume that the informed trader spends
as much as c to acquire the informa-
tion. Being better informed, his ex-
pected maximum profit presumably
will increase and he will stop collect-
ing the information until the marginal
cost equals the marginal benefit of
being informed. Assuming that the
time span is very short, the interest
rate between first and second period is
zero. Therefore, the expected realiza-
tion value of risky asset is the same in
both periods, v

1
 = v

2
. The informed

trader will maximize his private infor-
mation and use a similar approach,
while the E [u

2
]= 0, we can find the

solution as follows:

Max x
2

= Max x
2

= Maxx
2

(19)

Taking the first derivation in re-
spect of x

2
 and equating it to zero, we

are able to find the optimum order of
the informed trader in the second pe-
riod as follows:

02 2212  xpv 
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The optimum order of the in-
formed trader in the second period is
not affected by the information cost.
The information cost, c then disap-
pears from the first derivation in re-
spect of x

2
 unless the information cost

is a function of the number of shares or
investment size. The argument is not
quite logical if the information cost is
a constant, regardless of the number of
shares traded. The more plausible ar-
gument is that the larger the invest-
ment, the more likely traders will
spend money on information to protect
their investment. Therefore, the infor-
mation cost must be a function of the
number of shares traded or investment
size. If it is true, then the information
cost, c from Equation (19) must be
within the bracket.

Lemma 2: Under costly information
acquisition as structured
above, the optimum de-
mand of the informed
trader in the first and the
second period is as fol-
lows:
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Proof: Now let us modify Equation
(19) by assuming the informa-
tion cost is a linear function of

˜ ˜

E{(x
2
v

2
 - p

1
x

2
 - 

2
x

2
2 - 

2
u

2
x

2
) - c}

E{(x
2 
(v

2
 - p

1 
- 

2
x

2
2 - 

2
u

2
) - c}

E{(x
2 

(v
2
 - p

1
 - 

2 
(x

2
 +u

2
)) - c}



30

Gadjah Mada International Journal of Business, January-April 2005, Vol. 7, No. 1

the investment in the sense of
the demand for risky asset. It
is true that the informed trader
has to bear the information
cost before submitting the or-
der. But it is plausible to as-
sume that a trader who has a
large investment is willing to
spend more for information
than other traders who have a
smaller investment. Using a
similar approach we can find
the optimum demand of the
informed trader in the second
period as follows:

2

12

2
2

cpv
x


 (21)

The more detailed proof is omit-
ted due to the very simple case and it
can be solved by modifying the previ-
ous proof. The optimum order of the
informed trader is a linear function of
the information accuracy minus the
information cost. The more accurate
the information is, the larger the order
of the informed trader will be. The
informed trader will continue to col-
lect the information as long as the
information value is higher than the
cost, (v

2
 - p

1
) > c. The optimum profit

in the second period given optimum
orders, x

2
 is as follows:

  Profit =

            =  212

24

1
cpv 


(22)

Let us substitute Equation (22)
into the optimization function in the
first period; we know that the in the
first period, the informed trader faces
a similar profit maximization prob-
lem. As we assume that E[u

1
, u

2
]= 0

and we are able to rearrange Equation
(23) and solve for x

1
, the optimum

order of the informed trader in the first
period is as follows:

(23)

We can use the similar proof as in
Lemma 1 to find the optimum demand
in the first period. Thus, some steps
were omitted.
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the optimum demands of the informed
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egy has an impact on the optimum
demand as well. It is obvious that if the
realization value is equal to the current
price v

1
 = p

0
, no one will be willing to

collect the private information.

Proposition 2: Given the optimum
demand in the first and
the second period, the
market maker set the
pricing strategy as fol-
lows:

and

Proof: We can use a similar approach
to prove the above proposition.
Equations (21) and (24) can be
used to find 

1
 and 

2
 as well by

substituting into the demand
function, as we know that the
price is a linear function of total
order flows. Thus, in the sec-
ond period the price of the
risky asset is P

2
 = p

1
 + 

2
y

2
.

So, P
2
 - p

1
 = p

1
 + 

2
y

2
, and

P
1
 = E [v
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]. The similar way

follows,
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(25)

If we substitute Equation (21) into
the total order flow y

2
 = x

2
 + u

2
 and

remember that the market maker only

observe the distribution of the realiza-
tion value of risky asset v

2
, we can

solve for lambda giving the following
result:

(26)

                                         and
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We know that as in the Kyle
(1985) model 1/2 =   and beta
measures the aggressiveness of the
informed trader. In the second period,
the market depth –as measured by the
reciprocal of lambda– is a linear func-
tion of the volatility of the uninformed
trader and decreases in the volatility of
the risky asset. The more volatile the
uninformed trader in the market is, the
more aggressive the informed trader
would be. As we assume that the
market maker sets up the price as a
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linear function of order flows; so,
when the volatility of uninformed trader
increases, the price become even less
efficient and the depth increases. A
similar approach can be applied to find
lambda in the first period.

Let us substitute the demand of
the informed trader and the uninformed
trader in the first period and solve for
the variance of total order flows and
covariance between the expected real-
ization value of the risky asset in the
first period and the total order flows.
Then, we are able to find lambda as
follows:

and
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(29)

From Equation (29) we find that
the market depth in the first period is
a linear function of the variance of
uninformed traders’ demand and in-
versely related in the variance of the
asset value. However, we are not able
to find the closed form solution for

lambda in the first period because the
lambda in the first period is a function
of the lambda in the first and the
second periods. This problem is open
for a further research. As in Kyle
(1985), lambda represents how the
market maker learns about the liquida-
tion value of the risky asset from the
order flows. The reciprocal of lambda
coefficient is interpreted as the market
depth, which refers to the ability of the
market to absorb quantity without hav-
ing a large effect on price. If the
lambda coefficient is small, then the
market is very liquid. This means an
increase in the trader’s demand has
only a small impact on the price.

The Implication and Discussion

Based on the Kyle models, we
find that the market depth in the second
period as measured by the reciprocal
of lambda is a linear function of the
uninformed traders and inversely re-
lated to the private information. The
higher the information level, the better
the estimate of asset value and the
smaller the error would be. The mar-
ket depth increases whenever the in-
formed trader has better information
in the sense that the informed trader
knows the price does not yet reveal the
expected realization value of risky
asset. The informed trader has to trade
immediately whenever he has private
information that is not yet reflected in
the price. Otherwise, his information
become valueless.

From the uninformed traders’
point of view, when the demand of the
informed trader rises, the price risky
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asset becomes more efficient. It is
because the informed trader has pri-
vate information and has to take ad-
vantage of his information. The unin-
formed trader then able to infer the
information better from the price and
he is even more willing to trade. The
increase in uninformed trader’s de-
mand provide an opportunity for the
informed trader to camouflage the trade
and hide his private information. How-
ever, we have a little bit difficulty to
draw direct conclusion for the price
behavior and the market depth in the
first period since we do not have a
close-simple form solution. We find
that the market depth in the first period
is affected by the market depth in the
second period. This problem remains
open for further research.

The Lemma 2, shows that the
costly information acquisition has an
impact on the optimum demand of the
informed trader as long as the informa-
tion cost is a linear function of invest-
ment size. But when we assume that
the information cost is fixed, no matter
the investment size is, the information
cost does not affect the equilibrium
demand. The question then, is it plau-
sible to assume that the information
cost is a linear function of investment
size? We believe that the larger the
investment is, the bigger the risk faced
by trader would be. Therefore, trader
willing to bear higher information cost
to minimize the risk. The information
cost can be defined in terms of money,
time and effort to acquire and to ana-
lyze the information. This argument
also supports the empirical evidence

that institutional investors are willing
to hire experts and analysts just to
make any better valuation of the risky
asset.

The optimum demand in the first
period shows that the informed trader
takes into account the pricing strategy
in both periods as measured by lambda.
It is plausible since the price of the
risky asset in the second period, P

2
 =

p
1
 + 

2
 (x + u) is a function of the price

in the first period. The price in the first
period becomes public knowledge and
the price in the second period must
reflect the private information of the
informed trader in the second period.
Lambda also indicates how the market
maker adjusts the price to the changes
of order flow. It is true that indirectly
we are assume that the informed trader
makes profit at the expense of unin-
formed trader. This argument may
raise some doubt. However, we be-
lieve that in the market not all traders
have access to the information and
some of them do trade simply because
they like it to do so or due to other
reasons. Our model disserved to be
tested empirically and open for further
research.

Conclusion

In this research we model trading
behavior and examine the impact of
heterogeneous expectations on asset
prices. We explore a market when
informed traders have private infor-
mation about the expected realization
value of a risky asset. We extend
Kyle’s (1985) one-period model to a

˜
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two-period model. The optimum de-
mand in the second period is similar to
what have been shown in Kyle. In the
first period, the optimum demand of
the informed trader is a linear function
of the private information as measured
by the difference between the realiza-
tion value of a risky asset and the
current price, v

1
 - p

0
. The informed

trader takes into account not only the
pricing function in the first period, but
also the pricing function in the second
period.

The price of risky asset is an
increasing function of the volatility of
the expected realization value, and it
decreases in the volatility of the unin-
formed traders’demand. When we as-

sume that the information cost is a
function of investment size, we find
that the costly information acquisition
has an impact on the optimum demand
of the informed trader. The informa-
tion cost has indirect impact on the
price behavior through the optimum
demand of informed trader. It can be
seen from lambda for both periods,
that the information cost did not ap-
pear on the equations. In other words,
market makers do not consider the
information cost directly in setting the
price. However, if we assume that the
information cost is independent of the
investment size, we do not find that the
information cost does have an impact
on the demand of the risky asset.
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