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ABSTRACT Nine resorcinol derivatives were evaluated for their ability to inhibit yeast α‐glucosidase using the in vitro
method. Three molecular docking programs (Autodock Vina, Autodock4 and DockThor) were employed to determine
the binding energies. The results showed that two resorcinol derivatives possessing butanoyl (1) and butyl (9) groups
demonstrated good inhibitory activity against α‐glucosidase, with IC50 values of 75.9 and 33.3 µM respectively, compared
with other derivatives (2–8) and acarbose (IC50 = 832.8 µM). Furthermore, molecular docking indicated that compounds 1
and 9 had better binding affinities than acarbose and the native ligand. Both compounds showed similar interactions with
Asp349 and Glu408, which were associated with acarbose and the native ligand. Moreover, molecular dynamics analysis
indicated that compound 9 exhibited greater stability than compound 1 when complexed with α‐glucosidase. Therefore,
compound 9 has the potential for further studies, both in vitro and in vivo, to evaluate its toxicity, side effects and efficacy.
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1. Introduction

Diabetes mellitus (DM) has become a public health chal­
lenge in the 21st century. By 2021, this prevalent condi­
tion has affected approximately 536.6 million individuals
worldwide. In the absence of effective preventive strate­
gies, projections indicate that this number could increase
to approximately 783.2 million by 2045 (Sun et al. 2022).
This disease is characterized by elevated blood glucose
levels, a metabolic disorder that can result in important
health problems including cardiovascular diseases, hyper­
tension, obesity, renal disorders, and vision impairment,
thereby substantially contributing to the global health bur­
den (Kshirsagar et al. 2020). Millions of individuals suc­
cumb to complications associated with this condition an­
nually. A therapeutic approach for managing this disease
in patients with diabetes reduces the degradation of dietary
carbohydrates (Dowarah and Singh 2020).

α­glucosidase catalyzes the hydrolysis of long­chain
dietary carbohydrates into monosaccharides within the
small intestine. These monosaccharides subsequently en­
ter the bloodstream, resulting in elevated blood glucose

levels (Ghani 2015). Consequently, α­glucosidase inhibi­
tion has emerged as a vital therapeutic strategy to reduce
blood glucose levels by restricting carbohydrate diges­
tion (Dowarah and Singh 2020). α­glucosidase inhibitors
primarily address elevated blood glucose levels without
directly influencing insulin secretions. Therefore, these
inhibitors are regarded as essential oral agents for glu­
cose reduction and are independently utilized in cases of
mild diabetes (Ghani 2015). In cases of severe diabetes,
these inhibitors are administered in conjunction with in­
sulin or other pharmacological agents (Nathan et al. 2006;
Dhameja and Gupta 2019). Currently, acarbose, vogli­
bose, and miglitol are three commercially available α­
glucosidase inhibitors, but these inhibitors are associated
with numerous side effects, including diarrhea, abdominal
discomfort, bloating, and flatulence, as well as problems
associated with their efficacy (Ghani 2015).

Up to now, many researchers have modified and eval­
uated the potency of some synthesized compounds bear­
ing polyphenol derivatives against α­glucosidase, includ­
ing 7­O­alkylated chrysin (a), 1,2,3­triazole­chalcones
(b), N′­arylidene­4­hydroxybenzohydrazide (c), steroidal­
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chalcones (d), thymol­chalcones (e), apigenin deriva­
tives (f), tanshinone II bearing oxazole ring (g), 8­
bromobaicalein (h), 3,4­dihydroxyphenylacetic acid bear­
ing hydrazide­hydrazone derivatives (i), dihydropyridine
bearing hydrazone­Schiff bases (j), and quercetin deriva­
tives (k) (Hairani and Chavasiri 2022; Ardiansah et al.

2023; Danova et al. 2023a, 2024b; Khan et al. 2024; Kong­
phet et al. 2024; Liu et al. 2024a,b; Hairani and Chavasiri
2025; Zainab et al. 2025), as presented in Figure 1. There­
fore, the discovery of novel drugs with minimal side ef­
fects is of utmost importance.

Furthermore, polyphenol compounds, including re­
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FIGURE 1 Several compounds have been synthesized as potent α‐glucosidase inhibitors.
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sorcinol derivatives, have been reported to inhibit α­
glucosidase (Ghani 2015; Kim 2016; Hu et al. 2021; Le
et al. 2022; Danova et al. 2023a; Han et al. 2023; Yuca
2024). Moreover, acyl and alkyl resorcinol derivatives in­
hibited tyrosinase and recombinant human aldose reduc­
tase (Ishioka and Nihei 2022; Kılınç 2022; Danova et al.
2023b). To further explore α­glucosidase inhibitors, nine
4­monoacylresorcinol derivatives that had been prepared
from our previous work (Danova et al. 2023b) were tested
against yeast α­glucosidase. In this study, in vitro, molec­
ular docking, and molecular dynamics simulations were
performed to evaluate and predict the binding interactions
of 4­monoacylresorcinol derivatives with α­glucosidase.

2. Materials and Methods

2.1. Materials

α­glucosidase from Saccharomyces cerevisiae
(EC.3.2.1.2.0), p­nitrophenyl­α­D­glucopyranoside
(p­NPG), and acarbose were bought from Sigma­Aldrich
and Tokyo Chemical Industry (TCI). α­glucosidase
inhibition assays were performed using an ALLSHENG
AMR­100 microplate reader. Compounds 1–8 had
been prepared from the previous work (Danova et al.
2023b). Compound 9 was purchased from TCI (CAS No.
18979­61­8, purity >98.0%).

FIGURE 2 Structures of resorcinol derivatives (1–9) and inhibitory
activity against yeast α‐glucosidase.

FIGURE 3 Overlapping between reference (dark gray) and redock‐
ing ligands (pure green) with RMSD 0.168 Å.

2.2. Methods
2.2.1 α­glucosidase inhibition assay

The α­glucosidase activity was executed as previously ex­
plained (Danova et al. 2024a). In this experimental pro­
cedure, 0.1 U/mL of α­glucosidase was conducted, and 1
mM p­NPG was prepared in a 0.1 M phosphate buffer at
pH of 6.9. A 10 μL sample and 40 μL of α­glucosidase
were mixed and incubated at 37 °C for 10 min. After­
wards, 50 μL of the p­NPG solution was added and re­
incubated at 37 °C for 20 min. The end of reaction was
initiated by adding 100 μL of 1 M Na2CO3. The activity
of α­glucosidase was determined at 405 nm using a mi­
croplate reader. The IC50 value was calculated by plotting
the percentage inhibition against concentration. Acarbose
served as the standard control, and the testing was con­
ducted in triplicate.

2.2.2 Molecular docking

The molecular structures of the compounds were con­
structed and optimized using the Merck molecular force
field (MMFF94) within ChemOffice Professional 15.0.
The crystal structures of α­glucosidase from S. cerevisiae
(PDB ID: 3A4A) were obtained from the Protein Data
Bank (https://www.rcsb.org/) with native ligand (mal­
tose). AutoDock Vina and Autodock4 tools in PyRx V.1.1
softwarewere utilized to conduct molecular docking (Trott
and Olson 2010; Dallakyan and Olson 2014) with an ex­
haustiveness of 32 and a mode value of nine poses for each
docked ligand. DockThor is a free molecular docking pro­
gram (https://dockthor.lncc.br/v2/, retrieved on April 06,
2025) (Guedes et al. 2024). The α­glucosidase­binding
site was stated as a box with dimensions of 20 × 20 × 20 Å,
positioned at x = 20.632, y = ­7.726, and z = 23.447. The
RMSD value is less than 2Å, signifying a valid docking
protocol and confirming its appropriateness for the dock­
ing process. Binding interaction and visualization were
achieved using the BIOVIA Discovery Studio Visualizer.

2.2.3 Molecular dynamics analysis

Compounds 1 and 9 were further studied to investigate
the stability of the inhibitor­enzyme complex in aqueous
condition during simulation. Molecular dynamics simula­
tion was performed based on our previous protocol using
YASARA Structure (v.21.16.17) with AMBER14 force­
field (Danova et al. 2024a).

3. Results and Discussion

3.1. Results
In this study, nine resorcinol derivatives (1–9) were
assessed for their inhibitory activity against yeast α­
glucosidase, followed by molecular docking to predict the
interaction between the ligand and amino acid residues
in the active site of α­glucosidase. As shown in Figure
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2, resorcinol­containing butanoyl (1) exhibited good in­
hibition against α­glucosidase compared to a commercial
product, acarbose (IC50 = 832.8 ± 46.35 µM). However, its
activity dropped without inhibition when resorcinol pos­
sessed two butanoyl groups (2). Moreover, this result was
not significantly different from that for the long­chain acyl
group (3–8). Surprisingly, resorcinol attached to the butyl
group (9) enhanced the inhibitory activity compared to
compound 1. This finding suggests that the inhibitory ac­
tivity of resorcinol derivatives may be influenced by the
electron density and charge circulation on the aromatic
ring (Shimizu et al. 2000; Dasgupta et al. 2019; Lee et al.
2021), where the acyl group prefers electron­withdrawing
groups to drive electron density out of the aromatic ring,
but alkyl groups prefer electron­donating groups to force
electron density into aromatic ring. Thus, compounds 1
and 9 are potent inhibitors of α­glucosidase and should be
developed for further studies to treat type 2 diabetes mel­
litus.

As shown in Figure 2, structure of compound 1 has
acyl (electron­withdrawing group) and compound 9 has
an alkyl (electron­donating group). However, the IC50
of both compounds were different. This phenomenon is
very interesting. To further study, molecular docking and
dynamics studies were conducted to estimate the bind­
ing interaction of both compounds to predict the com­
plex stability of the inhibitor with protein target. Molec­
ular docking was shown to calculate the binding energies
of compounds 1–9 to α­glucosidase using three different
programs (AutoDock Vina, Autodock4, and DockThor),
as presented in Table 1. To verify the docking process,
the ligand originally crystallized with the protein was re­
docked, as illustrated in Figure 3. In this study, AutoDock
Vina is utilized to forecast potential docking configura­
tions owing to its faster processing speed and ability to
produce more precise binding poses, while Autodock4 has
better binding affinity (Nguyen et al. 2019; Chen et al.
2023). This study also uses the DockThor program be­

Compound 1
Compound 9

Acarbose Native Ligand (Maltose)

FIGURE 4 The 2D interaction plots of 1, 9, acarbose, and the native ligand in complex with α‐glucosidase (PDB ID: 3A4A).
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cause it has different algorithms to estimate binding en­
ergy (Guedes et al. 2024) by comparing the result with
Autodock Vina and Autodock4. The molecular docking
results are presented in Table 1. The binding energies of
these compounds (1–9) were from ­6.3 to ­7.2 kcal/mol
through Autodock Vina, ­2.6 to ­5.0 kcal/mol through
Autodock4, and ­6.6 to ­7.5 kcal/mol through DockThor,
as shown in Table 1. Moreover, two compounds with
good inhibitory activity (1 and 9) exhibited strong bind­
ing affinity (­3.7 and ­3.9 kcal/mol) compared with acar­
bose (­0.5 kcal/mol) and native ligand (­3.1 kcal/mol) us­
ing Autodock4.

Furthermore, the two­dimensional (2D) and three­
dimensioanl (3D) interactions of the ligand with α­
glucosidase were visualized using BIOVIA Discovery
Studio Visualizer (Figure 4 and 5). Compound 1 displayed
two H­bonds with Glu408 and Asp349 as well as π­anion
and hydrophobic interactions with Asp349, Phe175, and
Val213. Compound 9 showed π­anion and hydrophobic
interactions the same as compound 1, including three H­
bonds with Arg312, Gln350, Glu408. Moreover, acarbose
and the native ligandmostly exhibited H­bond interactions
at the orthosteric site of α­glucosidase. Compounds 1 and
9 networked with Asp349 and Glu408 that correlated with
acarbose and native ligand, as shown in Figure 2.

To further our analysis, molecular dynamics were per­
formed to analyze the stability of inhibitors in complex
with protein in aqueous condition during simulation for
100 nanoseconds (ns). The findings indicate that the sta­
bility of the complex formed by compound 9 with α­

TABLE 1 Binding energies (kcal/mol) of compounds 1‐9, acarbose,
and native ligand with 3A4A.

Cmp
Binding Energy (kcal/mol)

Autodock Vina Autodock4 DockThor

1 ‐6.5 ‐3.7 ‐6.7
2 ‐6.7 ‐2.6 ‐7.5
3 ‐7 ‐3 ‐6.8
4 ‐7 ‐5 ‐6.7
5 ‐7.2 ‐3.8 ‐6.6
6 ‐7.1 ‐4.4 ‐6.8
7 ‐6.9 ‐3.3 ‐7.1
8 ‐6.4 ‐4 ‐7.5
9 ‐6.3 ‐3.9 ‐6.9
Acarbose® ‐8.3 ‐0.5 ‐8.1
Native Ligand
(maltose) ‐5.7 ‐3.1 ‐6.4

glucosidase remained consistent throughout the simulation
supported by the RMSD, radius of gyration, and SASA
values, as depicted in Figures 6a, 6b, and 6d. Compound
1 revealed instability, as evidenced by significant fluctu­
ations between 70 and 100 ns, in contrast to compound
9. The number of contact values was relatively compara­
ble both compounds 1 and 9 (Figure 6c). Additionally,
RMSF (root­mean­square fluctuation) computes the ex­
tent to which a ligand deviates from its average position
throughout a molecular dynamics simulation (Lee et al.

(a)

(b)

FIGURE 5 The 3D visualization of 1 (green, a) and 9 (pink, b) in overlapping with acarbose (blue) and the native ligand (dark gray) in complex
with α‐glucosidase (PDB ID: 3A4A).
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(a) (b)

(c) (d)

(e)

FIGURE 6 Evaluation of root‐mean‐square displacement (RMSD) (a), radius of gyration (Rg) (b), number of contacts (#Contacts) (c), solvent
accessible surface (SASA) (d), and root‐mean‐square fluctuation (RMSF) (e).

2024). Compounds 1 and 9 displayed similar fluctuations
in several residues during simulation, which may suggest
comparable activity against α­glucosidase, as described in
Figure 6e. Moreover, compound 9 was more stable than
compound 1 with the average of binding values of ­92.98
kJ/mol for compound 1 and ­103.25 kJ/mol for compound
9. Therefore, compound 9 may have more potency for fur­
ther research in the treatment of DM type 2.

4. Conclusions

In summary, nine resorcinol derivatives (1–9) were suc­
cessfully investigated for their inhibitory activity against
yeast α­glucosidase and their binding energies with α­
glucosidase, using threemolecular docking programs. The
results revealed that two compounds (1 and 9) having

butanoyl and butyl displayed better inhibition against α­
glucosidase (IC50 = 75.9 and 33.3 µM) than other deriva­
tives (2–8) and acarbose (IC50 = 832.8 µM). In addition,
the results of molecular docking showed that compounds
1 and 9 possessed good binding affinity and similar inter­
actions with Asp349 and Glu408, which were allied with
acarbose and a native ligand. Molecular dynamics showed
that compound 9 was higher stable than compound 1 in
complex with α­glucosidase. Therefore, the development
of compound 9 has the potential for further investigation
of their efficacy using in vitro and in vivo studies.
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