Adherence Pheno-genotypic of *Escherichia coli* O157:H7 Isolated from Beef, Feces of Cattle, Chicken and Human

I Wayan Suardana\(^1,2\)*, Wayan Tunas Artama\(^3\), Widya Asmara\(^4\), and Budi Setiadi Daryono\(^5\)

\(^1\)Department of Veterinary Publich Health, Faculty of Veterinary Medicine, Udayana University, Denpasar, Indonesia.  
\(^2\)Study Program of Biotechnology, The Graduate School of Universitas Gadjah Mada, Yogyakarta, Indonesia.  
\(^3\)Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.  
\(^4\)Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.  
\(^5\)Department of Genetic, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.

**Abstract**

Generally, adherence of micro-organisms to host cells is the first step of the colonization to host surfaces. *Escherichia coli* O157:H7 can colonize to the intestine and induce attaching-effacing (AE) lesions. The capacity of inducing AE lesions is encoded by a pathogenicity island, the locus of enterocyte effacement (LEE) that contains genes involved in generation of attaching and effacing (A/E) lesions. Among which that, the *eae* gene is encoding intimin, an outer membrane protein that is responsible to intimate attachment to the intestinal epithelial cells. A total of 20 local isolates obtained from human clinically, beef, cattle, chicken, and human non-clinically were tested to adherence pheno-genotypic of *E. coli* O157:H7. The *eae* gene was identified using polymerase chain reaction with a specific primer i.e AE19 forward and AE20 reverse. To confirm phenotypic of gene, further study was performed by culturing the bacteria in vero cell, followed by Giemsa staining and Acridine Orange Fluorescent staining 3 h and 6 h after incubation, respectively. Result of study showed that there were 19 out of 20 (95%) isolates identified positive *eae* gene. Giemsa staining appeared that the bacteria with positive *eae* gene performed a cluster around cell (localized adherence). On the other hand, the negative *eae* gene appeared as a diffuse adherence (DA). The study indicated that almost all of *E. coli* O157:H7 local isolates which was positive *eae* gene had potency to colonize to the intestine and induce attaching-effacing lesions, and also cause cytopathic effects in intestinal epithelial cell.

**Keywords**: *E.coli* O157:H7, *eae* gene, intimin

**Introduction**

*Escherichia coli* O157:H7 is one of the zoonotic agents that life treating associated with food and water borne infections. Phatogen was recognized can cause several disease syndrome, including asymptomatic infection, mild diarrhea, haemorrhagic colitis, hemolytic uremic syndrome, and trombotic trombocytopenic purpura in people (Gooding and Choundary, 1997). The pathogenic capacity of bacteria resides in a number of virulence factors, including Shiga toxins (Stx1 and Stx2), enterohaemolysin and the intimin as a adherence protein (Gyles, 2007).

Generally, adherence of micro-organisms to host cells is the first step of the colonization to host surfaces (Dopfer *et al.*, 2000). *E. coli* O157: H7 can colonize to the intestine and induce attaching-effacing (AE) lesions (Cookson *et al.*, 2002). Attaching and effacing was a term
to describe an intestinal lesion (AE lesion) caused by specific strains of *E. Coli.* ‘Attaching’ because of the intimate attachment of the bacteria to the exposed cytoplasm membrane of the enterocyte; and ‘effacing’ because of the localized disappearance of the brush border microvilli (Stordeur et al., 2000).

The capacity of inducing AE lesions is encoded by a pathogenicity island, the locus of enterocyte effacement (LEE) that comprises a complex of forty-eight genes (Aktan et al., 2004). LEE island contains genes involved in generation of attaching and effacing (A/E) lesions, among which, that is *eae* gene encodes intimin, an outer membrane protein that is responsible to intimate attachment to the intestinal epithelial cells (Yu and Kaper, 1992). Intimin, a protein encoded by *eae* cromosomal gene, mediates adherence of attaching and effacing *E. coli* to intestinal epithelial cell (Ghanbarpour and Oswald, 2010). The bacteria can cause the forming AE lesions on the intestinal mucose *in vivo* and on the certain tissue and cell cultures *in vitro*. The mucosal lesion is associated with stunting and fusion of villi in severe cases. Bacteria can be seen on the mucosal surface, and may often be specifically identified by immunolabelling (Wales et al., 2005). Attaching and effacing *Escherichia coli* is recognised as a cause of diarrhoea and dysentery.

The bacterial adherence test *in vitro* has been usually proved by Giemsa and May-Grunwald staining (Aidar-Ugrinovich et al., 2007), or by acridine orange fluorescent staining which binds the nucleic acids of bacteria and stain them with orange. Acridine orange, a fluorochrome stain, is potentially superior to the Gram staining in the direct microscopic examination because it gives striking differential staining between bacteria and background cells and debris (Lauer et al., 1981).

The aim of study was to determine relationships between genotypic profile by analysis of *eae* gene and phenotypic feature of adherence by Giemsa and Acridine-Orange fluorescent staining of *E. coli* O157:H7 local isolates isolated from beef, feces of cattle, chicken, and human, therefore it can contribute to knowledge of the epidemiology and pathogenic capacity of this pathogen.

**Materials and Methods**

**E.coli O157:H7 isolates**

A total of 20 *E.coli* O157:H7 isolates obtained from beef, feces of cattle, chicken, and human in Bali were performed in Table 1. *E.coli* O157:H7 ATCC 43894 obtained by from BBVET

<table>
<thead>
<tr>
<th>No</th>
<th>Isolates code</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ATCC 43894*</td>
<td>Human Feces diarrhea</td>
</tr>
<tr>
<td>2.</td>
<td>KL-52(7)</td>
<td>Human with kidney failure symptoms</td>
</tr>
<tr>
<td>3.</td>
<td>KL-87(7)</td>
<td>Human with kidney failure symptoms</td>
</tr>
<tr>
<td>4.</td>
<td>KL-30(4)</td>
<td>Human with kidney failure symptoms</td>
</tr>
<tr>
<td>5.</td>
<td>KL-45(1)</td>
<td>Human with kidney failure symptoms</td>
</tr>
<tr>
<td>6.</td>
<td>KL-48(2)</td>
<td>Human with kidney failure symptoms</td>
</tr>
<tr>
<td>7.</td>
<td>KL-85(1)</td>
<td>Human with kidney failure symptoms</td>
</tr>
<tr>
<td>8.</td>
<td>KL-83(5)</td>
<td>Human with kidney failure symptoms</td>
</tr>
<tr>
<td>9.</td>
<td>KL-24(5)</td>
<td>Human with kidney failure symptoms</td>
</tr>
<tr>
<td>10.</td>
<td>KL-68(1)</td>
<td>Human with kidney failure symptoms</td>
</tr>
<tr>
<td>11.</td>
<td>KL-106(3)</td>
<td>Human with kidney failure symptoms</td>
</tr>
<tr>
<td>12.</td>
<td>KL-55(6)</td>
<td>Human with kidney failure symptoms</td>
</tr>
<tr>
<td>13.</td>
<td>MK-35</td>
<td>Chicken feces</td>
</tr>
<tr>
<td>14.</td>
<td>MK-19/8(4)</td>
<td>Chicken feces</td>
</tr>
<tr>
<td>15.</td>
<td>M-14(4)</td>
<td>Human feces with non symptoms</td>
</tr>
<tr>
<td>16.</td>
<td>M-17(1)</td>
<td>Human feces with non symptoms</td>
</tr>
<tr>
<td>17.</td>
<td>DS-21(4)</td>
<td>Beef</td>
</tr>
<tr>
<td>18.</td>
<td>DS-16(2)</td>
<td>Beef</td>
</tr>
<tr>
<td>19.</td>
<td>SM-25(1)</td>
<td>Cattle feces</td>
</tr>
<tr>
<td>20.</td>
<td>SM-7(1)</td>
<td>Cattle feces</td>
</tr>
</tbody>
</table>

*Strain reference*
Bogor was used as a reference strain. All strains were maintained in nutrient agar slants.

**Isolation of DNA templates**

All *E. coli* isolates and reference strains were grown in LB agar at 37°C overnight. Isolation of DNA template was performed by commercial kit (Qiagen 51304). A total of 5 ml *E.coli* O157:H7 culture aliquots were centrifuged at 7,500 rpm for 10 min, and the supernatant was discarded. The cell pellet was added by 180 µl of buffer ATL. Add 20 µl of proteinase K prior of added 200 µl AL buffer. Mix immediately by vortexing for 15 s, incubate at 56°C for 10 min, then add 200 µl ethanol (96-100%) to the sample, and mix again by pulse-vortexing for 15 s. After mixing, remove drops from the inside of the lid. Carefully apply the mixture to QIAamp Mini Spin Column, and centrifuge at 8000 rpm for 1 min, and discard the tube containing the filtrate. Add 500 µl buffer AW1 then centrifuge at 8000 rpm for 1 min and discard the filtrate. Add 500 µl of buffer AW2, then centrifuge at full speed (14,000 rpm) for 3 min. Place the column in a clean 1.5 ml microcentrifuge tube, add 50 µl buffer AE, incubate at room temperature (15-25°C) for 1 min, and then centrifuge at 8000 rpm for 1 min.

**PCR Amplification of eae gene**

The eae gene of *E. coli* O157:H7 was amplified using specific primers according to Moon et al., (2004) as follows: forward primer 5’- CAG GTC GTC GTG TCT GCT AAA-3’ and reverse primer 5’-TCA GCG TGG TTG GAT CAA CCT-3’. Primers were diluted at a concentration 25 pmol/µl. To amplify, it was used Platinum PCR SuperMix (Invitrogen) and amplified using thermocycler (TC25/H) with condition: initial denaturation at 94°C for 7 min, 36 cycles of 94°C for 1 min, 50°C for 35 s, 72°C for 2 min, and the final extension step at 72°C for 5 min. Amplification products were analyzed by electrophoresis in 2% agarose gels which was stained with ethidium bromide.

**Bacterial adherence and invasion assay on vero cell culture**

The methods of Aidar-Ugrinovich et al. (2007) with modification were used. Vero cell with 1 x 10⁴ cells/well were grown to subconfluence in 24-well tissue culture plates containing a sterile circular coverslip and 500 µl of medium M199 supplemented with 10% fetal calf serum, 2% penicillin-streptomycin, and 0.5% fungizone. Monolayers on the coverslips were washed 3 times with medium M199, and were incubated in duplo with 1 x 10⁶ bacteria/well. After incubation for 3 h, cells with the coverslips were washed 3 times with medium M199, to remove non-adherent organisms. Afterwards the coverslips were fixed with methanol and then stained with Giemsa, followed by observation with light microscopy (400x).

**Acridine orange staining of E.coli adhering vero cells**

The preparation of cells and bacterial adherence assays were described as above. After incubation 6 h, the media was aspirated from each well and the coverslips were washed 3 times with medium M199. The cell were fixed for 10 min with 3% formaldehide and then washed (3 x) with PBS (pH 7.2) steril. Cells were permeabilised by incubation with 0.1% Triton X-100 (Sigma) in PBS. The Triton was removed by washing 3 x with PBS, and the cells were covered with 15 µl PBS containing ethium and acrydin orange 0.05%. The cover slips were mounted on glass slide, and the slides were examined by fluorescence microscopy.

**Results and Discussion**

**Adherence genotypic of E.coli O157:H7**

Adherence genotypic by amplification of eae gene used a specific primers according to Moon et al., (2004). The total length of target eae gene that should be amplified is 3106 bp, but the primers were not designed from the beginning and the end of the sequence, so the fragment length that can be amplified is only 1087 bp. The result of DNA amplification using specific primers as seen in Figure 1.
Phenotypic of adherence test giemsa staining

Based on the \textit{eae} gene that is amplified as seen in Figure 1, further study was performed in order to know the adherence characteristic of \textit{E. coli} O157:H7 local isolate in vero cell culture after 3 h of incubation as seen in Figure 2.

Figure 2. Adherence Characteristic of \textit{E. coli} O157:H7 Local Isolates in Vero Cell Culture after 3 h of Incubation. (A): positive control ATCC 43894; (B) local isolates origin from human feces clinically i.e; KL55(6); (C): local isolates origin from beef i.e DS16(2); (D): negative control (no bacteria culture)

Figure 2 showed that a cluster bacterial (localized adherence) appeared in arroud of cell i.e for control isolate ATCC 43894 and local isolate KL 55(6), on the contrary, local isolate DS16(2) appered diffuse adherence (DA) arround of cell. On the other hand, no bacterial antigen has shown in negative control (vero cell without bacterial culture). According to Nataro \textit{et al.}, (1987) the adherence patterns were classified as localized adherence (LA), if the bacteria adhere to the cell surface as tight cluster; localized-like adherence (LAL), if the bacteria adhere to the cell surface forming loose clusters; aggregative adherence (AA), if the bacteria adhere to the cell surface and to the cover slip in a stacked brick pattern; diffuse adherence (DA), if the bacteria adhere...
diffusely to the cell surface, and undetermined adherence (UND), if bacterial adherence could not be classified in one of these defined patterns. Result of study verified that the eae gene has been shown to be necessary for attaching and effacing cavacity. Ghanbarpour and Oswald (2010) intimin as a protein which is encoded by eae cromosomal gene, mediates adherence of attaching and effacing of E.coli to intestinal epithelial cell. Numerous investigators have been underlined the strong association between the carriage of eae gene and the capacity of STEC causing severe human disease, especially haemolytic uremic syndrome/HUS (Blanco et al., 2004). This important virulance gene was detected in 19 out of 20 local isolates (95%), and gave evidence that local isolates of E. coli O157:H7 were had potency to induce attaching and effacing lesion.

**Acridine orange fluorescent staining**

Acridine orange (OA) is a fluorochrome which binds to nucleic acid of eukaryocytes as well as prokaryocytes. Using OA stain and fluorescent microscopy, it showed that bacteria were specifically stainned red-oarange, while mammalian cellular elements and background debris were retained an apple green to yellow color (Greenfield et al., 1985). Further study in order to confirm the adherence characteristic of E. coli O157: H7 local isolate in vero cell culture after 6 h of incubation after staining with acridine orange as seen in Figure 3.

Figure 3 has been showed the formation of polykaryocytes in ATCC 43894 and KL55(6) isolates within 6 h after inoculation. Albrecht et al. (1996) reported that polykaryocytes are a larger cytoplasmic masses that contain many nuclei and are usually produced by fussion of infected cells. Polykaryocytes usually are used as a marker of cytopahatic effects. According to Konishi et al., (2008), the formation of polykaryocytes in vero cell depend on the pH of vero cell. Polykaryocytes were detected under pH 7 as early as 9 h after infection. Erez et al., (2009) reported that polykaryocytes / syncytia formation is largely separated into two major routes: One is induced by large number of agen particles which are present in the medium, attach the membrane and thus induce fussion. The other results from high amount of intracellular agent particles which induce fussion.

In conclusion, there were 19 out of 20 (95%) local isolates identified positive eae gene. Giemsa staining appeared that the bacteria which were positive eae gene performed a cluster arroud of cell (localized adherence). On the other hand, the negative eae gene appeared as a diffuse adherence (DA). The study indicated that almost all of E. coli O157:H7 local isolates which were positive eae gene had potency to colonize to the intestine and induce attaching-effacing lesions and also cause cytopahatic effects in intestinal epithelial cell.

**Acknowledgment**

We thank to Mr. Prof. Supar, APU from BBVET Bogor for his giving a E. coli O157:H7 ATCC43894 standard, and Mrs. Istini as a technician at Integrated Testing and Researching Laboratory, Universitas Gadjah
Mada for her participation on the study and giving a vero cell that was used.

References


Lauer, B.A., Barth Reller, L. and Mirrett, S. 1981. Comparison of Acridine Orange and Gram Stains for Detection of


