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ABSTRACT Recombinant human epidermal growth factor (rh-EGF) has high value in therapies for h-EGF deficiency-related
diseases. The expression of the h-EGF gene was designed by using the pET21b(+) vector and Escherichia coli BL21(DE3) as the
expression host. In a previous study, the sequence of a 6xHis tag without any restriction sites was fused to the h-EGF gene, yet
it was not possible to obtain a purified and single rh-EGF by this approach. In this study, we modified the rh-EGF expression
vector using site-directed mutagenesis (SDM) to remove the sequence of the 6xHis tag. The vector modification was carried
out by inserting a stop codon and the EcoRlI restriction site, along with deleting the 6xHis tag sequence. The results of PCR
showed non-specific bands, while 2-step cycles PCR produced one non-specific band, and 3-step cycles PCR produced two
non-specific bands. After purification of the PCR products, the SDM-recombinant plasmids treated for template plasmid-free
product were transformed into E. coli DH5a. Even though the transformation efficiency was low, the planned gene mutations
including the deletion of the 6xHis tag and insertion of the stop codon and EcoRI restriction site in plasmid pET21b(+) were
successfully carried out. When using this modified vector in expression studies, rh-EGF of a similar size to that of the rh-EGF
standard and approximately 1 kDa smaller than the rh-EGF-6xHis of the previous study was obtained.
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1. Introduction

Human epidermal growth factor (h-EGF) is a small protein
to stimulate cell proliferation, differentiation, viability in
various cell types such as epithelial cells, fibroblast cells,
endothelial cells including tumor cells with complex regu-
latory mechanisms (Citri and Yarden 2006; Su et al. 2006;
Xian 2007; Higashiyama et al. 2008; Zeng and Harris
2014). It is functional protein from derivate large precur-
sor gene, this large precursor gene includes encoding mem-
brane receptor, EGF-like repeats, and EGF or growth fac-
tor family (Bell et al. 1986; Zeng and Harris 2014). This
protein can be detected in saliva, milk, intestinal fluid, and
others (Fisher and Lakshmanan 1990; Xian 2007; Dvorak
2010). h-EGF protein is composed of 53 amino acids with
three disulfide bonds with conserved be cysteines from C1
to C6 specified in glycine and arginine. This mature pro-
tein has molecule mass about 6.2 kDa (Savage et al. 1972,
1973; Zeng and Harris 2014). However, the rh-EGF used
in this study has been added a methionine residue at the
N-terminal for intracellular expression in E. coli. In our
sequence, disulfide bonds were formed by binding of C7-

C21; C14-C31, and C33-C43. In an in vivo study with
pig and mice, it is showed that EGF can prevent and treat
necrotizing enterocolitis and also be important in gastroin-
testinal repair (Nair et al. 2008). EGF suppresses fibrosis
in mice liver induced by thioacetamide (TAA) associated
with inhibiting hepatic stellate cells (Huang et al. 2012).
EGF is important in remodeling the cytoskeleton for en-
docytosis and cell proliferation (Kharchenko et al. 2007).
Growth factor family such as EGF contributed to wound
healing in various tissues and their possibility play roles
in therapy based on stem cells (Fu et al. 2002; Pikuta et al.
2015).

h-EGF has been synthesized by several recombinant
protein techniques due to its importance in treatments
from h-EGF lack-related diseases. The recombinant h-
EGF (rh-EGF) can be used for therapies in kidney destruc-
tion diseases such as glomerular disease (Flamant et al.
2012; Klein et al. 2016). Moreover, th-EGF for patients
with diabetic ulcers with level 1-4 showed significant re-
pair of injury (Putri and Sriwidodo 2016) and rh-EGF
spray also significantly useful for reduced mucositis oral
induced by radiotherapy (Wu et al. 2009).
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In our previous study, th-EGF was successfully in-
serted into the expression vector pET21b(+) and trans-
formed to Escherichia coli DH5a (Nurmalasari 2010). In
the recombinant plasmid, the gene of h-EGF was fused
with a gene of 6xHis tag, but without any cleavage sites
between them. Therefore, it is not possible to obtain sin-
gle and purified h-EGF. In this study, the recombinant plas-
mid was modified by using PCR based-SDM to insert stop
codon and delete the 6xHis tag sequences. Thus, it is ex-
pected that purified h-EGF could be obtained by other pu-
rification methods than affinity chromatography.

Site-directed mutagenesis (SDM) or site-specific mu-
tagenesis is a technique in genetic engineering to intro-
duce defined mutations into target DNA. The mutation
is needed to improve the expression of a recombinant
gene and in protein/enzymes studies (Xu et al. 2003; An-
tikainen and Martin 2005; Walquist and El-Gewely 2001).
In genetic and protein engineering, the SDM is beneficial
to generate DNA sequence with mutated codons includ-
ing insertion or deletion by using polymerase chain reac-
tion (PCR) (Edelheit et al. 2009; Walquist and El-Gewely
2001). PCR is a common amplification technique to ob-
tain extremely high copies of target DNA (Bhatia and
Dahiya 2015). PCR-based SDM method requires a pair
of forward and reverse primers to amplify full-length plas-
mid containing a sequence of interest, 5’phosphorylation
of the blunt-ended amplification product, degradation of
PCR template with Dpnl enzyme, ligation, and transfor-
mation (Rabhi et al. 2004; Walquist and El-Gewely 2001).
The SDM technique has been applied in a number of stud-
ies, for instances to study interaction of type III secre-
tion (T3S) components in model pathogenic bacterium of
Yersinia (Francis et al. 2017), PCR-free CRISPR/Cas9 mu-
tagenesis (She et al. 2018), and SDM in Arabidopsis with
zinc finger nuclease (Osakabe et al. 2010).

According to the reported studies, PCR-based SDM
offers a lot of advantages, such as almost 100% success-
ful targeted mutation (Wan et al. 2012) and > 60% of sub-
clones contain the desired mutation (Xu et al. 2003). More-
over, the PCR-based SDM is able to be designed with
specific restriction sites which simplify the mutant screen-
ing and increase mutation reliability and fidelity (Edelheit
et al. 2009; Zhang et al. 2009; Walquist and El-Gewely
2001).

2. Materials and methods

2.1. Preparation of SDM-recombinant plasmid

A template plasmid, namely pET21b(+)_egf.syn_6xHis
tag was isolated from the recombinant subcloning host
E. coli DH50_ pET21b(+)_egf.syn_6xHis tag using the
alkaline lysis method (Ausubel et al. 2002). The ob-
tained recombinant plasmid was purified with Geneaid™
Gel/PCR DNA Frgments Extraction kit and then used as
a template in PCR for SDM with KOD-Plus-Mutagenesis
kit. Primers used for SDM are reverse primer: 5’-TTA
TCA ACG AAG TTC CCA CCA TTT CAG ATC ACG
ATA CTG GCA-3’ and forward primer: 5’-GAA TTC

GAT CCG GCT GCT AAC AAA GCC CGA AAG-
3’ (purchased from Integrated DNA Technologies-IDT®,
Singapore). The PCR mixture was prepared in accordance
with the standard protocol for the KOD-Plus-Mutagenesis
kit and KOD-Plus-Neo kit. Subsequently, the 2-step cy-
cles PCR was performed as follows: pre-denaturation: 2
min at 94°C, denaturation: 10s at 98°C, annealing: 30s at
68°C, extension: 2 min 45 s at 68°C, hold at 4°C, and for
annealing temperature screening use 3-step cycles PCR
was performed as follows: pre-denaturation: 2 min at
94°C, denaturation: 10 s at 98°C, annealing: 30 s at [56.3—
64.2]°C, extension: 2 min 45 s at 68°C, hold at 4°C. Af-
terward, the obtained PCR product was treated using Dpnl
enzyme mixture to digest the template plasmid which con-
taminated the PCR product at 37°C 1 h. The template
plasmid free-PCR product was purified with a Geneaid™
Gel/PCR DNA Fragments Extraction kit. The target tem-
plate plasmid free-PCR product was then ligated with a lig-
ation enzyme in a KOD-Plus-Mutagenesis kit. The prod-
uct of the ligation was subsequently named as the SDM-
recombinant plasmid.

2.2. Transformation of SDM-recombinant plasmid to E.
coli DH5« and transformants stability test

Transformation of product the SDM-recombinant plas-
mid using calcium chloride (CaCl,) heat-shock treatment
(Ausubel et al. 2002). The competent cells were prepared
by harvesting subculture of E. coli DH5a at OD 0.25-0.3
and centrifugation at 6000 rpm, 10 min at 4°C. The pellets
were resuspended with CaCl, then incubated in ice water
for 30 min. The CaCl; treated pellet was centrifuged again
at 6000 rpm, 10 min at 4°C and resuspended with CaCl,
+ 15% glycerol. The competent cells can be stored in the
freezer —80°C. Prior to transformation, 7.5 pL of SDM-
recombinant plasmid was added to 50 pL. competent cells
and incubated on ice for 20 min. Heat-shock treatment
was conducted by placing the transformation mixture in
42°C water for 30 s then keeping it in ice water for 5 min.
After heat-shock treatment, 450 pL. LB medium was added
to the transformation mixture and incubated at 37°C, 200
rpm, 1 h. A number 100 pL and 150 pL of the transforma-
tion mixture was spread on LB agar plate with ampicillin
(AMP) 10 pg/mL and incubated at 37°C overnight. The
transformants stability test was performed by regeneration
the single colonies of the transformants on LB agar + AMP
10 pg/mL plate.

2.3. Transformants verification by PCR, digestion by en-
zyme restriction, and DNA sequencing

Verification of the transformants was generated with three
methods: PCR, EcoRI restriction enzyme digestion and
DNA sequencing. First, single colonies obtained from the
transformations (or named as transformants) were verified
by PCR, using primers of targeted gene (egf.syn) (IDT®,
Singapore) with set as follows: pre-denaturation: 5 min at
95°C, denaturation: 30 s at 95°C, annealing: 30 s at 55°C,
extension: 30 s at 72°C, final extension 60 s at 72°C and
hold at 4°C. Second, the SDM-recombinant plasmid was
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also checked with EcoRI restriction enzyme which is spe-
cific for the SDM-recombinant plasmid. The restriction
mixture reaction contained buffer orange 1 pL. (Thermo
Scientific, Lithuania), sample (SDM-recombinant plas-
mid) 1 pL, EcoRI enzyme (Thermo Scientific, Lithuania)
5units 1 pL, and dH, O 3 pL. The mixture was incubated at
37°C overnight and checked on agarose gel electrophore-
sis 0.7 percent. Final verification was DNA sequencing
of the SDM-recombinant plasmid with primer sequencing
T7 promoter and T7 terminator.

2.4. Expression of SDM modified rh-EFG in E. coli
BL21(DE3)

Purified SDM-recombinant plasmid from E. coli DH5«
was transformed to E. coli BL21(DE3) expression host.
The transformants were then pre-cultured in 1 mL LB
medium with AMP 10 pg/mL, incubated at 37°C; 180
rpm overnight. On the following day, 0.5 mL of pre-
culture was added to 5 mL LB medium and incubated at
37°C; 180 rpm; approximately for 2 h or until reaching
OD 0.6-0.8. Subsequently, the culture was added with
isopropyl -D-1-thiogalactopyranoside or IPTG (Thermo
Scientific, Lithuania) (final concentration 0.1 mM) and
incubated for 6 h at 37°C; 180 rpm. After IPTG induc-
tion, the cells (pellet) were collected by centrifugation at
8,000 rpm; 5 min; 4°C. The pellet was then solubilized
with solubilization buffer (8 M urea; 50 mM glycine; 80
mM [B-mercaptoethanol) and incubated at a cold temper-
ature (8-10°C) for 72 h. The solubilized protein was ob-
tained by centrifugation at 12,000 rpm; 15 min, and then
analyzed with tricine SDS PAGE (acrylamide 15%; 70
volts), also verified with western blotting against mono-
clonal antibody EGF (Santa Cruz, USA). The SDM modi-
fied rh-EGF was compared with rh-EGF standard (Sigma)
and rh-EGF with 6xHis tag.

3. Results and discussion

3.1. Preparation of SDM-recombinant plasmid

The result of plasmid purification from gel extraction con-
tained two bands (Figure 1). Based on the theory, plas-
mids are separated on gel electrophoresis according to its
topologies (De Mattos et al. 2004; Cebrian et al. 2014),
which are supercoiled (SC), open-circle (OC) or linear (L)
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FIGURE 1 Electroforegram of plasmid purification. 1 = Marker (1
kb), 2 = 3B, 1%t elute, 3 = 3B, 2" elute, 4 = 3B, 1%t elute, 5 = 3B,
2" elute, 6 = 3D; 15t elute, 7 = 3D, 2" elute, 8 = 3D, 15t elute,
9 = 3D, 25t elute. Sample 3B, 15t elute is used as a template PCR
for SDM. Code of samples “B” and “D” was a single colony from the
previous study.
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(Balagurumoorthy et al. 2008; Carbone et al. 2012). The
plasmid yield was varied significantly depending on the
elution. The first elution produced a thicker band than sec-
ond elution did. The purified plasmid in line 4 was used as
a PCR template because it showed the thickest band or in
other word had the highest concentration among the other
purified plasmids.

The result of PCR products can be seen in Figure 2.
Electroforegram of amplicon in 0.7% electrophoresis gel
showed that two non-specific bands were found after 3-
step cycles PCR (Figure 2a) and one non-specific band
was from 2-step cycles PCR (Figure 2b).

Wan et al. (2012) and Edelheit et al. (2009) mentioned
that several factors in primer design might cause non-
specific bands such as complicated mutation, high content
of G-C, complex secondary structure, tandem and inverted
sequence, and insertion of long primers. In our study, the

(bp)

10,000
6,000

Plasmid of interest
(5607 bp)
3,000
Non specific PCR product

1,000

Non specific PCR product
250

(bp)

10,000
&«—— Plasmid of interest
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FIGURE 2 Electroforegram of amplicon for SDM with various an-
nealing temperature, a) Electroforegram of 3-step cycles PCR. 1 =
Marker (1 kb), 2 = 64.2°C, 3 = 62.2°C, 4 = 60.2°C, 5 = 58.1°C, 6 =
56.3°C. PCR product for SDM showed 2 nonspecific products, b)
Electroforegram of 2-step cycles PCR (Tm = 68°C). 1 = Marker (1
kb), 2 = once dilution template, 3 = without dilution template, 4
= control (dH,0). PCR product for SDM showed 1 band nonspe-
cific product. c) Purification of template free-PCR product after
treated with Dpnl enzyme, 1 = Marker. 2 = template plasmid free-
PCR product from KOD-Plus-Mutagenesis kit, 3 = template plas-
mid free-PCR product from KOD-Plus-Neo kit 2-step cycles PCR,
4 = template plasmid free-PCR product from KOD-Plus-Neo kit 3-
step cycles PCR.
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(a)

(b)

(c)

FIGURE 3 a) Plate100 pL of transformation culture, b) Plate 150 L of transformation culture, c) Replica plating of transformant single colonies

from plate a (8-25) and transformation culture plate b (1-7).

plasmid template has a size of 5,619 bp, thus the possi-
bility that several bases are compatible with the primers
is high. The primers could bound to a region that was
not in the target primer-template binding. Non-specific
bands can be seen in Figure 2a and 2b. Other reasons for
non-specific bands are the PCR condition. We used ei-
ther 2-step cycles PCR or 3-step cycles PCR in our exper-
iment. A 2-step PCR cycling includes denaturation and
annealing/extension, while in 3-step PCR extension step
after annealing is added (Lorenz 2012). Too low denatur-
ing temperature (Roux 1995) and not optimal annealing
temperature (Vestheim and Jarman 2008; Kalendar et al.
2017) might also cause non-specific bands. Primers melt-
ing temperature (Tm primer) is the most important factor
in the success of PCR. In addition, optimized cycling con-
dition and reagent concentration also contribute to produc-
ing amplicons with the expected size. Changing a parame-
ter can influence other parameters, hence the production of
the amplicon is affected as well (Lorenz 2012). The result
showed the best annealing temperature was at 68°C in 2-
step cycles PCR with an indicator such as forming one non-
specific band produced, while in annealing temperature
below 68°C in 3-step cycles PCR (64.2-54.3°C) program
were formed two non-specific PCR products. The opti-
mum PCR reactions ensure the amplification of the DNA
target and increase the quality of amplicons target (Joko
et al. 2011). Therefore, differences in temperature used in
annealing with 3-step cycles and 2-step cycles PCR pro-
gram produce a number of different bands.

All PCR products either from 3-step cycles PCR or
2-step cycles PCR with KOD-Plus-Neo and KOD-Plus-
Mutagenesis were treated with Dpnl enzyme and puri-
fied on gel electrophoresis (Figure 2c). Dpnl enzyme
is specific to digest PCR templates, particularly at the
methylated adenine base of GATC sequence in parental
strand (Johnston et al. 2013), but not in the PCR product
(Walquist and El-Gewely 2001). DNA methylation is of-
ten described as a parental epigenetic sign and can be in-
herited through cell division, this mechanism is caused by
DNA binding proteins that bind DNA (Jones 2012; Moore
et al. 2013) so this site is found repeatedly in parental
strand (Sanchez-Romero et al. 2015). The repetition of
this site makes the template degradation more effective

11

so that pure PCR products are easy to be obtained. The
template plasmid free-PCR product was then purified and
ligated with ligation enzyme. Ligation enzyme catalyzes
the formation phosphodiester bonds between 3’ hydrox-
yls (OH) and 5’ phosphates (PO4) in nucleic acid residues
(Lohman et al. 2013) from this formation the circular plas-
mid can be formed.

3.2. Transformation of SDM-recombinant plasmid to E.
coli DH5« and transformants verification by PCR

Successful transformation is characterized by the growth
of colonies on selective medium (LB + Amp 10 pg/mL).
The successful transformation was only obtained from the
SDM-recombinant plasmid which was ligated from 3-step
cycles PCR product (Figure 3). On the plate with 100 pL.
transformation culture (Figure 3a), 16 single colonies were
found while on the other plates, seven single colonies grew
(Figure 3b).

The successive rate of this transformation method
is determined by Ca?" and heat shock temperatures
(Rahimzadeh et al. 2016). A pulse of 30 s duration at 42°C
heat shock temperature followed by a 10 min ice incu-
bation exhibited maximum efficiency, with a transforma-
tion efficiency 3 x 108 cfu/pg in DH5« (Singh et al. 2010).
Transformation efficiency in this study is low, so it is nec-
essary to repeat the transformation procedure. Few or no
transformants present might be caused by cells which are

(bp) 1 2 3 4 5 6 7 8

egfsyn (177 bp)

FIGURE 4 Verification SDM-recombinant plasmid with target gene
(egf-syn). 1 = Marker (100 bp), 2 = colony 3, 3 = colony 7, 4 = colony
15, 5 = colony 22, 6 = positive control (1st elute from miniprep), 7 =
positive control (ligation plasmid), 8 = negative control (dH,O).
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(b)

(d)

FIGURE 5 a) streak colony 3, b) streak colony 7, c) streak colony 15, d) replica plating for streak colony 3 (1-10), streak colony 7 (11-20) and

streak colony 15 (21-25).

not competent and incorrect heat-shock protocol. Most
cases of transformation failure due to heat shock tempera-
ture is inaccurate (Chang et al. 2017). The temperature
is important because the heat-shock step is a facilitator
for competent cells to intake DNA or plasmid (Das and
Dash 2015; Chang et al. 2017). This problem can be fixed
by preparing a new batch of competent cells by improve-
ment in heat-shock and incubation temperatures and du-
ration and use a water bath for accuracy temperature in
heat-shock step.

Subsequently, each colony was regenerated in a
replica plating. Replica plating is the technique to inoc-
ulate each colony/clone into multiple plates that used to
select specific hybridization, reduce the risk of environ-
mental microbial contamination and cross-contamination
between colonies (Carson et al. 2019). The best growth
was found in replica colonies number 3 and 7 from a plate
with 100 pL transformation culture and replica colonies
number 15 and 22 from a plate with 150 pL transfor-
mation culture (Figure 3a). The single colonies number
3, 7 and 15, 22 from replica plating were used for PCR
colonies for screening egf.syn sequence. Visualization of
PCR colonies using target gene (egf.syn) primer on gel
electrophoresis 0.7%. The result PCR colony showed that
replica colonies number 3, 7 and 15 positively had egf.syn
sequence, while the colony 22 showed a thin band of
egf.syn and a contaminant band. Positive control showed
band of egf.syn, but they had non-specific PCR product
and also no band was found from negative control (Figure

(bp)
1,000
900
800
700
600
500
400

300

200

<— egf.syn (177 bp)

100

FIGURE 6 Verification SDM-recombinant plasmid target gene
(egf.syn), 1 = Marker (100 bp), 2 = colony 3.1, 3 = colony 3.2, 4 =
colony 3.3, 5 = colony 7.1, 6 = colony 7.2, 7 = colony 7.3, 8 = colony
15.1, 9 = colony 15.2, 10 = colony 15.3.
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4). From this result, colonies number 3, 7 and 15 were
streak again to regenerated on a new plate.

Figure 5 shows the results of colony streak regenera-
tion from colonies number 3, 7 and 15, whereas colony
number 22 was not regenerated because suspected to be
a contaminant product. From the colony number 3, 7
and 15, a number of re-single colonies were obtained, i.e
55 colonies (Figure 5a), 26 colonies (Figure 5b) and 15
colonies (Figure 5¢), respectively. Subsequently, from the
regenerated single colony, 10 of 55; 10 of 26 and 5 of
15 colonies were randomly reselected to be replicated on
a new plate (Figure 5d). Three sub-single colonies from
each colony on the plate in Figure 5d have isolated the plas-
mid and then used in SDM verification with PCR colonies
to screening egf.syn sequence.

Visualization of the PCR sub-colonies using primer
target gene (egf.syn) for second replica cultures from
streak colonies 3, 7 and 15 are shown on Figure 6. All
samples were found to have a egf.syn sequence. Based on
these results, sub-colonies 3.2, 7.2 and 15.2 were selected
to be checked with the EcoRI restriction enzyme.

3.3. Transformants verification by digestion with en-
zyme restriction, and DNA sequencing.

3.3.1. Digestion by EcoRl restriction enzyme

The EcoRI restriction enzyme was used to check spe-
cific sequence (G/AATTC) in SDM-recombinant plasmid

(be)

10,000

6,000 SDM-recombinant plasmid

(5607bp)
3,000

1,000

250

FIGURE 7 Verification SDM-recombinant plasmid with EcoRlI re-
striction, 1 = subclone 3.2, 2 = subclone 7.2, 3 = subclone 15.2, 4
=marker 1 kb.
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FIGURE 8 Final verification SDM-recombinant plasmid with DNA
sequencing. a) DNA sequencing result of sub-colonies 3.2, b) DNA
sequencing result of sub-colonies 7.2, c) DNA sequencing result of
sub-colonies 15.2.

(Shivanand and Noopur 2010). The restriction EcoRI se-
quence has been encoded on the SDM forward primer. De-
sign restriction site in mutagenesis primers to ensure ef-
ficient mutant screening (Zhang et al. 2009). Visualiza-
tion of successful EcoRI restriction can be seen on elec-
trophoresis gel 0.7% (Figure 7). All samples showed sim-
ilar bands with the same band location with an estimated
size of 5,607 bp. Line number 3 did not show a band be-
cause no template added in the mixture for EcoRI restric-
tion treatment.

3.3.2. DNA sequencing

Three transformants (sub-colonies number 3.2, 7.2 and
15.2) were confirmed by DNA sequencing using 1st
BASE (Malaysia). The universal primers used for DNA
sequencing were the T7 promoter primer and T7 termina-

13

EcoRIStop godo
GAATT!

Wamw
GGTGGTGCTCGAGACT

Xhol

TCTCAGTGGTGGTGGT!
HisTag Sequence

FIGURE 9 Alignment DNA sequencing of SDM-recombinant plas-
mid with control sequence (recombinant plasmid before SDM).

kDa

26.6

14.0
11.0

6.5

FIGURE 10 SDS PAGE profile of solubilized cells pellet
from rh-EGF expression in E. coli BL21(DE3). Lane 2; 4;
6: uninduced condition; lane 3; 5; 7: IPTG induced (0.1
mM). Lane 2; 3: BL21(DE3)_pET21b(+)_rh-EGF_no.3.2;
Lane 4; 5: BL21(DE3)_pET21b(+)_rh-EGF_no.7.2;  6;7:
BL21(DE3)_pET21b(+)_rh-EGF_no.15.2. The rh-EGF is clearly
expressed with IPTG induction, but slighly appear in uninduced
condition. Lane 1: low protein marker.

tor primer. All of the samples had the expected mutations,
conserved reading frame and no mutations were observed
in the target gene (egf.syn). In addition, they were success-
fully added with two stop codons and EcoRI restriction
sites also succeeded in deleting 6xHis tag sequences (Fig-
ures 8a, 8b and 8c). Sequence alignment with software
clustalX and Bioedit of sequence from DNA sequencing
results shows more clearly the deletion 6xHis tag sequence
and insertion EcoRI restriction sequence and stop codons
(Figure 9).

3.4. Expression of SDM modified rh-EFG in E. coli
BL21(DE3)

The SDM-modified rh-EGF vector has been used to ex-
press the rh-EGF without 6xHis tag. The rh-EGF was ex-
pressed by IPTG induction at 0.1 mM and found at less
than 6.5 kDa in size (Figure 10). Some samples from unin-
duced treatment also shows rh-EGF expression, but not
significant. It was expressed in uninduced condition due
to leaky of the expression system having a strong promoter
such as T7 promoter Tegel et al. (2011).

In Figure 11, it was proven that after removing the
6xHis tag, the th-EGF was obtained at similar size with
the standard, while the rh-EGF_6xHis tag has bigger size,
approximately 1 kDa, the theoretical size of 6xHis tag
(Zhu and Qian 2012). In regard to the removing 6xHis tag,
affinity chromatography, particularly Ni-NTA chromatog-
raphy, is not suitable to purify the rh-EGF from other E.
coli endogenous proteins (Hochuli et al. 1988). Other pu-
rification methods, like size exclusion and/or ion exchange
chromatography, might be applied (Suortti 1997).
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FIGURE 11 SDS PAGE (1-5) and western blot (6-10) profile of rh-
EGF after SDM modification compared with that of with 6xHis tag
and rh-EGF standard. Lane 2 & 9: rh-EGF standard; Lane 3 & 8:
rh-EGF_6xHis tag; Lane 4 & 7: IPTG induced rh-EGF; Lane 5 & 6:
uninduced sample. The rh-EGF standard has a similar size with rh-
EGF after SDM modification which is less than 6.5 kDa. The rh-
EGF_6xHis tag has app. 1 kDa size bigger than the rh-EGF.

4. Conclusions

The rh-EGF vector has been successfully modified by
SDM. EcoRI restriction site sequence, stop codons had
been inserted, and 6xHis tag had been successfully deleted
from plasmid expression vector pET21b(+) recombinant.
Therefore, the modified vector expressed rh-EGF without
6xHis tag and had a similar size with rh-EGF standard. In
this study, it was proven that the PCR based SDM was an
effective, precise, simple, and low-cost technique to im-
prove or modify a recombinant plasmid.
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