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ABSTRACT Cisplatin is one of the chemotherapy for the treatment of triple-negative breast cancer (TNBC), but its
effectiveness is limited because of the phenomenon of chemoresistance. miR-638 was shown to regulate chemoresistance;
however, it has never been validated in the cisplatin-resistant tumor from patients. This present study aimed to identify
the key gene regulatory networks of miR-638 and evaluate the potential role of the miR-638 and its targets as potential
prognosis biomarkers for cisplatin-resistance triple-negative breast cancer patients. The miR-638 target was obtained
from the miRecords database while the mRNA of chemoresistance biomarker candidate was obtained from the GSE18864
of GEO database, which is mRNA of cisplatin-resistance TNBC patients. CCND1 and FZD7 are potential candidates
for cisplatin chemoresistance biomarkers in patients with TNBC. Moreover, a Kaplan-Meier survival plot showed that
breast cancer patients with low mRNA levels of FZD7 had significantly worse overall survival than those in higher mRNA
expression group. Taken together, miR-638 plays a role in cisplatin resistance mechanism through a mechanism involving its
target gene CCND1 and FZD?7. Overall, miR-638, CCND1, and FZD7 are candidates for cisplatin biomarker resistance in TNBC.
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1. Introduction

Triple-negative breast cancer (TNBC) occurs in about
20% of cases of breast cancer and is associated with the
risk of relapse and poor prognosis (Kuo et al. 2017). Cis-
platin is a chemotherapy drug, which is used for the treat-
ment of triple-negative breast cancer, but its effectiveness
has not been maximized due to the problem of chemoresis-
tance (Hu et al. 2015). Chemoresistance is a phenomenon
when cancer cells become insensitive to chemotherapy and
are classified into intrinsic and acquired resistance (Ji et al.
2019). The TNBC is an aggressive subtype that usually
evolves chemoresistance (Kim et al. 2018). One of the
biomarkers for predicting chemoresistance and prognosis
is miRNA (Wei et al. 2019), a small non-coding RNA con-
sisting of 21-22 nucleotides that negatively target mRNA,
and thus suppresses the expression of its target genes (Orso
et al. 2019).

miR-638 is one of the miRNAs that has been exten-
sively investigated in the development of cancer (Li et al.
2011; Lin et al. 2015; Wei et al. 2017). It acts as either a
tumor suppressor gene or oncogene. miR-638 possesses a
tumor suppressor gene by inducing apoptosis and inhibit-

ing cell proliferation, invasion, and migration (Shen et al.
2017). In osteosarcoma, miR-638 promotes apoptosis by
suppressing cyclin D1, phospholipase D1 (PLD1) and vas-
cular endothelial growth factor (VEGF) (Xue et al. 2019).
miR-638 directly targets HOXA9 and suppresses the ex-
pression of Wnt/beta-catenin-regulated oncogenes cyclin
D1 and C-MYC (Zheng et al. 2018). On the other hand,
miR-638 acts as an oncogene. miR-638 promotes metas-
tasis and prevents cell death in melanoma cells (Bhat-
tacharya et al. 2015). It induces cell proliferation, migra-
tion, and invasion in oesophagal squamous cell carcinoma
and breast cancer cells by targeting DACT3, a key regula-
tor of Wnt/beta-catenin signaling (Ren et al. 2017).

miR-638 also regulates chemoresistance in cancer
cells. Increasing expression of miR-638 after chemother-
apy in non-small cell lung cancer patients is correlated
with better survival (Wang et al. 2015). It also enhances
the efficacy of bleomycin and cisplatin in K562 leukemic
cells (He et al. 2016). In MDA-MB231 cells, miR-638
regulates cell migration and sensitivity to cisplatin (Tan
et al. 2014). Nevertheless, no study has been conducted
on the regulation of miR-638 and its regulatory network
in cisplatin-resistant TNBC using patient samples.

Over the past few years, bioinformatics has grown and
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provided new methods for the prediction of drug-target
genes using multiplatform analysis (Wang et al. 2019).
Computational approaches have been used to mine and in-
tegrate data in public databases to provide researchers with
accurate and fast information in the field of biomedicine
and drug discovery (Pandika 2018). In this study, several
databases were used, including GEO, TargetScan, ON-
COMINE, KMPIlotter, STRING, and c-Bioportal to iden-
tify the interactions between miR-638 and its target genes
in patients with cisplatin-resistance TNBC.

In this study, we utilize a bioinformatics approach with
data mining analysis to identify key gene regulatory net-
works of miR-638 and evaluate the potential role of the
miR-638 and its targets as potential prognosis biomark-
ers for cisplatin-resistance triple-negative breast cancer
patients. The target of miR-638 was predicted using
miRecords database. Gene expression profile of cisplatin-
resistant breast cancer was obtained from GEO datasets.
We also performed validation using KM Plot and ON-
COMINE and identified genetic alterations among target
genes in cBioportal database.

2. Materials and Methods

2.1. Data collection and processing

Microarray data were obtained from GSE18864, which
contains twenty-eight women with triple-negative breast
cancer stage II or III, which received four cycles of cis-
platin. Patient age ranged from 29 to 69 years at diagno-
sis. Fourteen patients were considered a good response,
and fourteen patients were considered as a poor response
based on Miller-Payne score (Silver et al. 2010). Data pro-
cessing was conducted using GEO2R, an online tool for
GEO data analysis based on the R programming language
(https://www.ncbi.nlm.nih.gov/geo/geo2r/). Differential
expression genes (DEGs) between cisplatin sensitive and
resistant cells/tissues were screened. Adjusted P value
<0.05 and IFCI >1.5 were used to select significant DEGs,
as described in a previous study (Zhao et al. 2018).

2.2. miRNA target prediction

The target of miR-638 was predicted using miRecords
database (http://cl.accurascience.com/miRecords/) (Xiao
et al. 2009). The target genes, predicted from at least four
databases, were selected and collected. A Venn diagram
was generated to DEGs from GSE18864 and miR-638
target genes from miRecords using Venny 2.1 (https://bi
oinfogpcnbcsices/tools/venny/indexhtml) (Oliveros 2007)
(Oliveros 2007). Interaction between miR-638 and its
target genes in target sites was analyzed by TargetScan
(http://www.targetscan.org) (Agarwal et al. 2015).

2.3. Analysis of miR-638-target gene regulatory net-
work

miR-638-target gene (SRGAP1, HIC2, CCNDI,

SAP30BP, and FZD7) regulatory network was con-

structed with Cytoscape software (version 3.7.1) by using
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default parameters (Shannon et al. 2003).

2.4. Kaplan Meier survival analysis

The prognostic value of miR-638 and the target genes (SR-
GAP1, HIC2, CCND1, SAP30BP, and FZD7) were evalu-
ated using Kaplan-Meier survival curves (http://kmplot.c
om) by log-rank test, with p<0.05 was selected as the cut-
off value (Gyorffy et al. 2010).
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FIGURE 1 (a) Venn diagram of miR-638 target genes analyzed by
miRecords and GSE18864; (b) miRNA 638-target gene regulatory
network in cisplatin-resistant triple negative breast cancer, con-
structed by Cytoscape; (c) Overall survival curve of breast cancer
patients related to the expression of miR-638.
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TABLE 1 Analysis of mutual exclusivity among target genes in the MBC study.

Gene A Gene B p-Value Log2 Odds Ratio Tendency identification
CCND1 SAP30BP <0.001 2.273 Co-occurrence
SRGAP1 CCND1 0.008 1.76 Co-occurrence
SRGAP1 SAP30BP 0.014 2.052 Co-occurrence
SAP30BP FzD7 0.105 >3 Co-occurrence
HIC2 SAP30BP 0.2 >3 Co-occurrence
CCND1 FzZD7 0.308 >3 Co-occurrence
HIC2 CCND1 0.522 1.179 Co-occurrence
SRGAP1 HIC2 0.83 <-3 Mutual exclusivity
SRGAP1 FZD7 0.911 <-3 Mutual exclusivity
HIC2 FZD7 0.992 <-3 Mutual exclusivity

2.5. Validation of target genes in cisplatin-resistant
and sensitive breast cancer cells

Confirmation of the reliability of the target genes in cis-
platin sensitive and resistant breast cancer cells was con-
ducted using ONCOMINE (https://www.oncomine.org),
a cancer microarray database and web-based data-mining
platform (Rhodes et al. 2004). Briefly, the expression
level of SRGAP1, HIC2, CCND1, SAP30BP, and FZD7
among cisplatin resistance breast cancer studies were re-
trieved from ONCOMINE.
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2.6. Analysis of genetic alterations among target genes

The genetic alterations of target genes were analyzed from
breast cancer studies using cBioPortal (http://www.cbiopo
rtal.org) (Cerami et al. 2012; Gao et al. 2013). Screened
target genes (SRGAP1, HIC2, CCND1, SAP30BP, and
FZD7) were subjected to genetic alterations analysis in all
breast cancer studies. The breast cancer study with the
highest genetic alterations was chosen for mutual exclusiv-
ity of the screened target genes with p<0.05 was selected
as the cutoff value.
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FIGURE 2 miR-638-target gene interactions, analyzed by TargetScan.
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3. Results

3.1. Identification of miR-638 target genes and miR-
638-target gene regulatory network

A total of 254 and 206 genes were extracted from
miRecords and GSE18864, respectively (Figure 1a). A
Venn diagram generated five DEGs from miRecords
and GSE18864, including SRGAP1, HIC2, CCNDI,
SAP30BP, and FZD7. A miR-638 target gene regulatory
network was constructed (Figure 1b). Interaction between
miR-638 and its target genes in target sites was analyzed
by TargetScan (Figure 2).

3.2. Kaplan Meier survival analysis

Kaplan Meier plot for overall survival of breast cancer pa-
tients showed that patients with the high miR-638 level had
significantly worse overall survival than those in the low
expression level group (p=0.021) (Figure 1c). The overall
survival was also obtained according to the low and high
expression levels of each target gene (Figure 3). The re-
sults showed that patients with the high mRNA level of SR-
GAP1 (p=0.13), CCND1 (p=0.18), and FZD7 (p=0.046)
(Figure 3) have better survival than patients with the low
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FIGURE 3 Overall survival of SRGAP1, HIC2, CCND1, SAP30BP, and
FZD7 across breast cancer samples, analyzed by KMPlotter.
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FIGURE 4 Expression of HIC2, CCND1, SAP30BP, and FZD7 across
cisplatin-resistant breast cancer samples, analyzed by ONCOMINE.

mRNA level. Moreover, patients with the high mRNA
level of HIC2 (p=0.81) and SAP30BP (p=0.26) have worse
survival than those with the low mRNA level.

3.3. Validation of target genes in cisplatin-resistant
and sensitive breast cancer cells

ONCOMINE was used to confirm the reliability of the tar-
get genes in cisplatin sensitivity (Figure 4). A study using
cell lines showed the downregulation of HIC2 in cisplatin-
resistance breast cancer cells (Lee et al. 2007). Another
study showed a similar level of CCND1 among cisplatin-
resistant and cisplatin-sensitive breast cancer cells (Gar-
nett et al. 2012). A study showed the downregulation of
SAP30BP cisplatin-resistance breast cancer cells (Gyorffy
et al. 2006). Moreover, a study using cell lines showed
a similar expression level of FZD7 among cisplatin-
sensitive and cisplatin-resistance breast cancer cells (Gar-
nett et al. 2012). No study was found in ONCOMINE re-
lated to SRGAP1 and cisplatin resistance in breast cancer.

3.4. Analysis of genetic alterations among target genes

Five target genes (SRGAP1, HIC2, CCNDI1, SAP30BP,
and FZD7) were analyzed using cBioportal to explore
their genomic alterations across breast cancer studies. A
study, namely the MBC Project (Lefebvre et al. 2016),
showed the highest genetic alterations among breast can-
cer studies and was selected for further analysis (Figure
5a). Genetic alterations for each target genes were found
from 0.6% (FZD?7), 1.1% (HIC2), 11% (SRGAP1), 13%
(SAP30BP) and 35% (CCND1) (Figure 5b). Moreover,
most gene alterations belonged to amplification (Figure
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FIGURE 5 Summary of alterations for hub genes in breast cancer patients (a) Based on breast cancer study; (b) Genetic alterations of SRGAP1,
HIC2, CCND1, SAP30BP, and FZD7 based on a study by Lefebvre et al. (2016).

5b). Additional mutual exclusivity showed that only three
gene pairs (CCNDI1-SAP30BP, SRGAP1-CCND1, and
SRGAP1-SAP30BP) exhibited significant co-occurrence
(p <0.05) in breast cancer study by the MBC Project (Table

1).

4. Discussion

This present study aimed to identify the key gene regula-
tory networks of miR-638 and evaluate the potential role of
the miR-638 and its targets as potential prognosis biomark-
ers for cisplatin-resistant TNBC patients. Understanding
the relevance of miRNA and its mRNA target is very im-
portant to elucidate the mechanism of gene transcription
and cellular pathophysiology. In addition, understanding
the mechanism of resistance is very important for diagno-
sis and treatment in TNBC patients because this sub-type
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is hard to treat.

In this present study, five genes were identified from
miRecords and GSE18864. Based on Kaplan Meier over-
all survival (Figure 3) and validation of target genes in
cisplatin-resistant and sensitive breast cancer cells with
ONCOMINE (Figure 4), two potential biomarkers were
identified, which are CCNDI1 and FZD7. Genetic al-
terations analysis among samples from the MBC Project
(Lefebvre et al. 2016) showed genetic alterations of
CCND1 and FZD7 in 35% and 0.6% of samples, respec-
tively (Figure 5). Thus, CCDN1 and FZD?7 are the poten-
tial key genes in cisplatin-resistant TNBC.

The two biomarker candidates, CCND1 and FZD7, are
extensively studied for its regulation in cancer develop-
ment. CCND1 encodes cyclin D1, which plays a role in
cell cycle progression in the G1-S phase transition (Seiler
et al. 2014). Cyclin D1 plays a role in the process of
cell proliferation and growth regulation, DNA repair, cell
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migration, and a prognostic and predictive marker in dif-
ferent types of cancer (Ramos-Garcia et al. 2017). Cy-
clin D1 is frequently overexpressed in human cancers, in-
cluding breast cancer (Maia et al. 2016), cervical cancer
(Xu et al. 2016), and non-small cell lung cancer (Baykara
et al. 2017). Cytoplasmic level of cyclin D1 is used for a
biomarker of early diagnosis in breast cancer (Ullah Shah
et al. 2015), as well as for biomarkers of invasiveness in
endometrial, breast, prostate and colon cancer (Fuste et al.
2016). However, high expression of Cyclin D1 has a posi-
tive correlation with the beneficial effect of chemotherapy
in metastatic bladder cancer (Seiler et al. 2014).

Genetic alterations study with cBioportal revealed al-
terations of CCND1 in 35% of patient samples, with am-
plification as the highest alterations. Previous studies
demonstrated that amplification in CCND1 is an early
event in the development of a breast cancer stem cells
(Burandt et al. 2016), and mutations in CCND1 is associ-
ated with increased risk of breast cancer (Soleimani et al.
2017). A previous study demonstrated that overexpression
of CCND1 has occurred through amplification, transloca-
tion, or post-transcriptional regulation (Xu and Lin 2018).
CCND1 gene amplification is a molecular key alteration
in breast cancer and was suggested to predict resistance
to endocrine therapy (Kilker et al. 2004). Taken together,
gene amplification of CCND1 possibly plays an essential
role in cisplatin-resistant TNBC. This mechanism needs to
be explored further.

The results of this present study revealed that CCND1
is downregulated in cisplatin-resistant TNBC. A previous
study demonstrated that targeting CCND1 with miR-503
leads to the induction of GO/G1 cell cycle arrest and re-
duction of cell proliferation in breast cancer (Long et al.
2015). Another study showed that downregulation of
cyclin D1 inhibits proliferation and colony formation in
SKOV3 ovarian cancer the cells (Yang et al. 2017). In ad-
dition, inhibition of proliferation in human ovarian cancer
cells by cisplatin is correlated with inhibition of CCND1
expression (Dai et al. 2016). miR-638 targets CCND1 and
thus inactivates PI3K/Akt pathway-regulated cell growth
in Sertoli cells (Hu et al. 2017). Therefore, further studies
on the role of CCND1 in TNBC resistance mechanism to
cisplatin are needed.

FZD7 encodes frizzled homolog 7 (Yang et al. 2011)
and plays an important role as a membrane receptor in
Wnt/B-catenin signaling in cancer cells (Xie et al. 2018).
Whnt signaling is activated in TNBC (King et al. 2012).
The expression of FZD7 is upregulated in patients with
breast cancer compared to normal tissues (Jia et al. 2018).
In addition, inhibition of FZD7 with interfering RNA
(King et al. 2012; Yang et al. 2011) or monoclonal anti-
body (Zarei et al. 2018) could reduce cell proliferation in
TNBC. Recently, FZD?7 is targeted by miR-638, leading
to inhibition of Wnt signaling in glioma progression (Chen
and Duan 2018). Therefore, it is necessary to further in-
vestigate the role of FZD7 in the mechanism of cisplatin
resistance in TNBC. Further, in vitro and in vivo studies
need to be done on the mechanism of miR-638 regulat-
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ing cisplatin resistance in TNBC, as well as how miR-638
regulates its target gene.

5. Conclusions

Our study provides an integrated data mining analysis of
the cisplatin resistance association between miR-638 with
the overall survival of breast cancer patients. miR-638
plays a role in cisplatin resistance mechanism through a
mechanism involving its target genes CCND1 and FZD?.
This present study also identifies miR-638 and its target
genes (CCNDI and FZD?) as a key gene and the potential
biomarker of cisplatin resistance in TNBC. However, fur-
ther in vitro and in vivo validation is needed to develop the
target gene as a biomarker.
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