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ABSTRACT Trichoderma reesei is known to be one of the organisms capable for producing various types of cellulase in
high concentrations. Among these cellulases, the highest catalytic efficiency of endoglucanases II (EGII, EC 3.2.1.4) are
considered important for industrial application. The characterization of the EGII is necessary since it is widely used in
high‐temperature reactions in the industries. In this study, the recombinant EGII protein was expressed in Pichia pastoris
and it has a molecular mass of approximately 52 kDa. Recombinant EGII was purified using Ni‐NTA affinity chromatography
and characterized by SDS‐PAGE and western blot analyses. The enzyme activity of recombinant EGII was measured using
the Nelson Somogyi method to determine its optimum pH and temperature. The result showed that the maximum EGII
expression was achieved after 72 h of culture incubation. The crude enzyme has optimum activity at pH 5.0, resulting in
16.3 U/mL and 14.6 U/mL activity at 40 °C and 50 °C, respectively. While the purified enzyme gave the specific activity
of 115.7 U/mg under the optimum condition. Finally, our study demonstrated that recombinant EGII could retain the
endoglucanase activity for 89% and 80% at 40 °C and 50 °C, respectively.
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1. Introduction

Trichoderma reesei is a wellstudied fungus that is capa
ble of producing large amounts of various cellulases. This
fungus secretes at least six types of cellulases that con
sist of two types of cellobiohydrolases and four endoglu
canases (Knott et al. 2014). These enzymes are exten
sively used in several industries, such as laundry deter
gent, textile and pulp, paper industry, and potential for
bioenergy production. Thereby, this fungus is industri
ally relevant to meet the target production level of cellu
lases. Nowadays, the engineering of cellulase into a high
performance enzyme for biomass hydrolysis and other in
dustrial applications becomes the major research priority.
However, various industrial processes and conditions (par
ticularly in different temperature and pH conditions) re
main a challenge. The cellulase excreted from T. reesei
cannot withstand a long period of exposure at high tem
perature and pH during its reaction process, which leads
to the leveling off of enzymatic activity (Akbarzadeh et al.
2014).

Among cellulases produced by T. reesei, endoglu
canase II (EGII; EC 3.2.1.4) is predominant and showed
the highest catalytic proficiency. The EGs activity of T.
reesei is known to decrease about 55% when EGII was

absent in the secretory complex of EGs (Qin et al. 2008;
Boonvitthya et al. 2013). This evidence revealed that the
presence of EGII is crucial for lignocellulosic biomass hy
drolysis and other industrial applications. Several stud
ies reported that EGII production and characteristic im
provement were performed by improving the strain of se
creting microorganisms, protein engineering, and recom
bination (Ito et al. 2004; Liang et al. 2011; Charoenrat
et al. 2013). Thereby, there is still ample scope for im
provement, particularly to produce EGII in a heterologous
expression system to facilitate protein engineering work.
Several heterologous expression has been carried out to
produce endoglucanases in various host microorganisms,
including Escherichia coli, Yarrowia lipolytica, Saccha
romyces cerevisiae, and Pichia pastoris (Nakazawa et al.
2008; Qin et al. 2008; Boonvitthya et al. 2013; Akbarzadeh
et al. 2014). Yeast is commonly used for its ability to in
crease protein stability since the glycosylation process has
occurred. In consequence, the structural and thermal sta
bility of protein may increase due to the covalent bond for
mation. The covalent bond formation causes less dynamic
fluctuation and reduces protein molecules’ flexibility (Qin
and Qu 2014).

Pichia pastoris has negligible native protein produc
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tion levels, which helps for easier purification of recombi
nant protein (MacauleyPatrick et al. 2005). It has also
been proven that the expression system promotes eco
nomically effective production of recombinant protein as
it does not need complex medium and condition (Safder
et al. 2018). The expression of a foreign gene in P. pastoris
includes three main steps: (a) insertion of the foreign gene
into an expression vector; (b) introduction of the expres
sion vector into the expression host, P. pastoris; and (c)
the selection of potential strains for foreign gene expres
sion (MacauleyPatrick et al. 2005). The gene encoding
EGII (egII gene) from T. reesei was successfully inserted
into an expression vector and introduced into P. pastoris
genome. In this study, the highexpression transformant
with high endoglucanase activity was selected for further
steps. The expression of recombinant EGII was regulated
under glyceraldehyde3phosphate dehydrogenase (GAP)
constitutive promoter in the fedbatch fermentation pro
cess. Recombinant EGII produced was then characterized
for the determination of its optimum pH, temperature, and
thermal stability.

2. Materials and Methods

2.1. Strain and plasmid
Pichia pastoris SMD1168H purchased from Invitrogen
(USA) was used as an expression host. Constructed plas
mid pLIPITrCel5A ordered at ATUM (USA) used as an
expression vector for P. pastoris transformant carrying
egII gene from T. reesei was available at Research Cen
ter for Biotechnology, Indonesian Institute of Sciences.

2.2. Colony selection
Pichia pastoris transformant from glycerol stock was
streaked in YPD agar (1% w/v yeast extract, 2% w/v
peptone, 2% w/v dextrose, 1.8% bacteriological agar)
medium containing zeocin (500 µg/mL) and ampicillin
(100 µg/mL) antibiotics (Invitrogen, USA) and incubated
at 28 °C for 36 h.

Six colonies were selected from the se
lection medium and characterized by colony
PCR. Specific primers, namely MFαFP1 (5’
ATGAGATTCCCATCTATTTTCACCGCTGTCT
3’) and TrCel5ARP (5’
GAGCGGGGGATATACTTTGGAAGTAACACAA3’),
were used to detect the inserted gene in the yeast genome.
PCR was performed as follows: initial denaturation at
95 °C for 5 min; 30 cycles of denaturation at 95 °C for
30 s, annealing at 55 °C for 40 s and extension at 72 °C
for 40 s, then final extension at 72 °C for 5 min. The
amplified fragments were then analyzed using 1% agarose
gel electrophoresis.

The colonies were then confirmed for their expression
of EGII, measured by a plate diffusion assay according to
the method proposed by Ratnakomala et al. (2019). Ten
microlites of each transformant cultures were added into
agar wells containing 0.5% (w/v) carboxyl methylcellu

lose (CMC) and incubated for 3 d at 30 °C. Finally, plates
were stained using 1% Congo Red solution for 15 min for
color development, followed by washing the plate with 1
M sodium chloride solution to detect halo zones. The di
ameter of the halo zones was measured and documented.
Transformants with bigger halo zones were selected for
further analysis.

Selected transformants were tested for their endoglu
canase activity. The activity was measured by Nelson
Somogyi (NS) method using CMC as a substrate, accord
ing to the reference by Gusakov et al. (2011). About 160
µL of 6.25 mg/mL CMC in 0.1 M acetate buffer (pH 5.0)
and 40 µL culture supernatant were preheated at 50 °C for
5 min. Both were mixed and heated at 50 °C for another
10 min. Zeropoint two milliliters of copper tartrate was
added into the mixture to stop the reaction, and then the
assay mixture was incubated in boiling water for 40 min.
The mixture was allowed to decrease the temperature to
25 °C (room temperature), then 0.2 mL of arsenomolyb
date was added and incubated at room temperature for 10
min. One point four milliliters of a mixed solution and 0.4
mL of acetone was added into the assay mixture and then
centrifuged at 13,000 rpm for 1 min. The optical density
was measured using a spectrophotometer at λ=610 nm to
estimate the quantity of reducing sugars produced in the
assay mixture. One enzyme activity unit was defined as
the amount of enzymeproducing one µmol of reducing
sugar per min under assay conditions (Jin et al. 2011).

2.3. Culture conditionof endoglucanase II expression in
Pichia pastoris

The preculture of each selected colonies was prepared
into 2 mL YPD medium containing 100 µg/mL ampicillin
and 100 µg/mL zeocin, then incubated at 28 °C for 2 d.
One milliliter of preculture was added into 19 mL YPD
medium containing 100 µg/mL ampicillin without zeocin
in an Erlenmeyer flask and incubated at 28 °C for 4 d at
250 rpm. Fedbatch culture, including sampling, was car
ried out every 24 h intervals by withdrawing 4 mL of cul
ture supernatant, along with the addition of 4 mL of 5×
YPD medium to return the initial medium volume. The
batch culture was only involving sampling every 24 h in
tervals by withdrawing 4 mL culture supernatant without
the addition of YPD media.

2.4. SDS‐PAGE andWestern Blot
Sample preparation for SDSPAGE analysis was done fol
lowing the reference by Koontz (2014). One milliliter of
culture from sampling was centrifuged in 12,000 rpm to
separate its pellet and supernatant. The sample supernatant
was added with 150 µL of 100% TCA, then vortex to ho
mogenize. The sample was incubated at 4 °C overnight
to allow protein precipitation, then centrifuged at 12,000
rpm for 10 min to allow separation between supernatant
and precipitated protein. The supernatant was removed
without disrupting the pellet. The pellet was washed using
200 µL of acetone, followed by centrifugation at 12,000
for 10 min. The step of washing the pellet with acetone
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was repeated twice to ensure no more TCA residue was
left. Pellet was allowed to dry to remove the acetone, then
added with 15 µL of 5× SDSPAGE loading buffer and be
ing heated for 10 min in boiling water. Samples then ana
lyzed by 15% SDSPAGE gel using 90 V for 80 min to run
the samples. The molecular mass was estimated from the
migration distance in comparison with the prestained pro
tein molecular weight marker (Thermo Scientific, USA).

Western blot was performed by electrotransfer the
bands from acrylamide gels onto a nitrocellulose mem
brane at 90 V for 2 h. The membrane was blocked using a
10 mL blocking agent containing 1% BSA, then incubated
for 1 h with gentle shaking at room temperature. The 5
µL of KPLHisDetector NickelHRP (SeraCare, USA)was
added directly into the block solution, and incubation was
continued for 1 h with gentle shaking. The membrane was
washed three times with TBS solution containing 0.05%
v/v Tween20, each time for 5 min. Finally, the detection
was done by adding 5 mL KPL TMB to visualize bands of
interest (Thermo Scientific, USA).

2.5. Purification of recombinant endoglucanase II
The cellfree medium culture was harvested using cen
trifugation after 72 h of incubation and purified manually
using NiNTA sepharose affinity chromatography column
(Thermo Fisher Scientific, Massachusetts, U.S.). One
milliliter of column material was washed with a fivebed
volume of 20% ethanol, then washed with aquadest with
the same volume. The columnwas then equilibratedwith a
fivebed volume of 50 mM PBS buffer (pH 7.4). A three
bed volume of crude EGII sample was added and incu
bated at 4 °C for 2 h. The sample was allowed to flow
through the column and collected in an Eppendorf tube,
labeled as a flowthrough fraction. The column was then
being washed with a threebed volume of 50 mM PBS pH
7.4. Finally, a threebed volume of an elution buffer con
taining 250 mM of imidazole was added into the column.
Each 250 µL was collected as one fraction in a 1.5 mL
centrifuge tube. Then proteins from collected fractions
were then analyzed using 15% SDSPAGE gel to identify
which fraction contained purified EGII. The protein con
centration was estimated using a Bovine Serum Albumin
(BSA) standard curve following Carter’s method (2013).
The electropherogram of SDSPAGE containing EGII pro
teins and a series of BSA with known concentration were
subjected to ImageJ 1.53e software (Rasband, 19972018).
By calculating the area under the curve (AUC) of the BSA
protein band, the linear regression equation was made.
The AUC of EGII was analyzed, and the value was entered
into the equation to get the concentration of recombinant
EGII.

2.6. Characterization of recombinant endoglucanase II
Characterizationwas done by following theNSmethod ac
cording to the reference by Gusakov et al. (2011) as men
tioned in section 2.2. The optimumpH and temperature for
enzymatic activity assay were established using the stan
dard procedure, according to the reference by Bajaj et al.

(2009). To determine pH’s effect on enzyme activity, var
ious buffers including citrate, acetate, phosphate, tris, bi
carbonate, and carbonate buffers with pH 3, 5, 6.8, 8, 9,
and 10 respectively were used. To determine the optimum
temperature of recombinant endoglucanase, the tempera
ture used was varied (40 °C, 50 °C, 60 °C and 70 °C) under
standard assay conditions. One percent of the CMC solu
tion was used as a substrate to determine optimum pH and
temperature. To determine the thermal stability of recom
binant EGII, equal quantities of purified EGII were pre
incubated for 15, 30, 45, and 60 min at optimum temper
ature and pH, which already predetermined. After pre
incubation, enzyme activities were measured using stan
dard assay conditions. Enzyme activity can be calculated
by using the formula as the following:

Whereas enzymespecific activity can be calculated by
using the following formula:

3. Results and Discussion

3.1. Selection of recombinant clones
A study conducted by (Sivashanmugam et al. 2009) sug
gested that longtime storage of glycerol stock utilized for
preculture preparation often leads to lowyield protein ex
pression, although the colony used was known to previ
ously produce a high yield of the target protein. Therefore,
colony selection should be reconducted. In this study, we
did colony selection from glycerol stock using colony PCR
followed by enzyme activity and expression screening.

The recombinant clones from glycerol stock were
spread on YPD plates containing zeocin (500 µg/mL) and
ampicillin (100 µg/mL). Six random recombinant clones
were selected for screening after incubation at 28 °C for
36 h. Colony PCR was performed using specific primers
to detect the presence of the egII gene in transformant
colonies. pLIPITrCel5A plasmid carrying egII gene was
used as a template for positive control while P. pastoris
SMD1168H nontransformed colony was used for nega
tive control. The amplified products were visualized on
an agarose gel as seen in Fig. S1, and were approximately
625 bp in length. The result ensures that all selected trans
formants were inserted with egII gene.

TABLE 1 Average of halo zones and enzyme activity of clone 1‐6.

Colony no. Average of halo zones (cm) Enzyme activity (U/ml)

1 2.98 8.568
2 2.65 7.096
3 2.62 7.498
4 2.65 6.570
5 0.92 4.165
6 0.77 6.540
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(a) (b)

FIGURE 1Agar well diffusion assay showing the enzymatic activity
of six transformants and a control. (a) Agar well diffusion result by
clone 1‐3 (b) Agar well diffusion result by clone number 4‐6 and a
non‐transformant (‐).

FIGURE 2 Endoglucanase activity assay of six transformant
colonies. Values are averages of duplo assays, bars indicate SD.

FIGURE 3Comparison of fed‐batch and batch production against a
number of cells. Values are averages of duplo assays; bars indicate
SD.

Colony selection was then continued with a qualitative
and quantitative enzymatic assay, namely plate diffusion
and NS assay. In plate diffusion assay, clone selection was
based on the ratio between well and halo zone diameter.
Whereas in NS assay, clone selection was based on the ac
tivity of EGII to breakdown CMC and produce reducing
sugars, by which the reducing sugars will react with the

NS reagent. CMCwas chosen as the substrate as it exhibits
an amorph structure suitable for the hydrolysis mechanism
by EGII (Biswas, 2014). This study showed that EGII was
successfully expressed in all selected clones, as indicated
by the halo zone formation. Clones 14 have a higher halo
zone diameter, among others (Table 1 and Figure 1). Re
combinant clones were then selected by determining their
enzyme activities using the NS method (Table 1 and Fig
ure 2). From those analyses, clones 13 showed higher
endoglucanase activity compared to other colonies.

3.2. Heterologous expression of Endoglucanase II by re‐
combinant clones in YPD media

The expression profile of recombinant protein produced
by six recombinant clones in YPD media was analyzed
through 15% SDSPAGE gel after 96 h of incubation, in
cluding sampling every 24 h intervals (Supplementary Fig
ure 2). Clone 2 was chosen for further expression anal
ysis as it showed the thickest band of interest at a size
of around 50 kDa with lesser nontarget bands. More
over, clone 2 also showed a high enzymatic activity, which
refers to plate diffusion and NS assay (Figure 1 and Fig
ure 2). Clone 2 was then used for recombinant EGII pro
duction through fedbatch and batch fermentation (Fig
ure 3). The production of recombinant EGII through fed
batch and batch fermentation was done to compare both
methods and know which method is less timeconsuming
and produce a higher level of the target protein. Feeding
was included in fedbatch fermentation by adding a new
5×YPD medium right after sampling, whereas batch fer
mentation only included sampling. The maximum num
ber of cells achieved through fedbatch fermentation was
3.76x107 cells/mL after 72 h of incubation. Meanwhile,
the maximum number of cells achieved through batch fer
mentation was only 2.71x107 cells/mL after 48 h of in
cubation. The protein expression was done through fed
batch fermentation (Figure 4a) showed a thicker band of
interest in each 24 h intervals compared to batch fermen
tation (data not shown). More protein bands were present
in the protein expression profile from batch fermentation
with less than 50 kDa in size. MacauleyPatrick et al.
(2005) suggest that the secreted recombinant proteins can
be proteolytically degraded in the culture medium. This
might happen due to cellbound proteases, extracellular
proteases, and/or intracellular proteases from lysed cells.
The problems due to proteolysis can be foreseen in the
recombinant protein production: (a) reduction of product
yield when product is degraded, and (b) reducing biolog
ical activity when the product is truncated. In this study,
protease production may occur due to the insufficiency of
nutrients that lead to cell lysis. In comparison, fedbatch
fermentation supplied enough nutrients added during pro
duction periods, which promoted optimal growth of cul
ture and higher protein expression (Hadiyanto et al. 2013).
Figure 4a showed that P. pastoris expressed the highest
concentration of recombinant EGII after 72 h of incuba
tion. Thereby, fedbatch fermentation for 72 h of incuba
tion was used for further production of recombinant EGII.
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(a) (b)

FIGURE 4 Expression and confirmation of endoglucanase II by clone 2. (a) SDS‐PAGE analysis and (b) Western Blot confirmation of recom‐
binant EG II. Lanes: (M) Protein molecular weight marker; (1‐4) protein expression after 24 h, 48, 72 h and 96 h respectively; (5) purified
protein.

The expression profile of recombinant EGII by clone
2 every 24 h intervals was visualized through SDSPAGE
analysis (Figure 4a). The maximum expression of recom
binant EGII was reached after 72 h with 3.49 mg/L pro
tein secreted from 20 mL of fermentation culture. The
growth of transformants reached stationary phase after 72
h; thereafter, it entered the death phase. The estimated
molecular mass of recombinant EGII was 52 kDa. EGII
is a glycoprotein with 397 amino acids and has a molecu
lar weight of 40 kDa without glycosylation (Garvey et al.
2014). However, its molecular weight may increases up to
48 kDa with native glycosylation done by T. reesei (Ak
barzadeh et al. 2014). Sun et al. (2018) reported that the
expression system by P. pastoris might increase up to 4
kDa of molecular weight due to glycosylation. In this
study, the SDSPAGE analysis of recombinant EGII pro
tein expressed in P. pastoris showed a thick band with
a slightly larger molecular mass than that of native EGII
from T. reesei. However, there was not enough evidence
to show that the increase in molecular mass is due to gly
cosylation. Treatment of recombinant EGII protein with
endoglycosidase H may be required as supporting data to
signify if glycosylation takes place.

3.3. Purification and confirmation of recombinant en‐
doglucanase II

The culture supernatant was purified manually using Ni
NTA sepharose resin. The column was eluted with an iso
cratic buffer containing 250 mM imidazole to release the
recombinant protein bound to the resin. All fractions col
lected were analyzed using SDSPAGE. Among 12 elu
tion fractions collected, the elution fraction 3 was known
to have the thickest band of interest, indicating the high
est concentration of purified protein (data not shown). All
samples collected from sampling for each 24 h and elu

tion fraction 3 were analyzed using SDSPAGE followed
by Western blot to confirm the recombinant EGII protein
(Figure 4b). The result exhibited a single band of 52 kDa
for each lane, which corresponds to a theoretical molec
ular mass of EGII recombinant proteins expressed in P.
pastoris (Bai et al. 2016). The concentration of purified
recombinant EGII was then quantified using a BSA stan
dard curve followed by ImageJ analysis, resulting in 0.21
mg/mL of purified EGII.

3.4. Characterization of recombinant endoglucanase II
The endoglucanase activity of recombinant EGII was as
sayed at different pH (3.0, 5.0, 6.8, 8.0, 9.0, 10.0). The
results showed that the recombinant EGII exhibited op
timum activity at pH 5.9 (Figure 5). Activity above pH
8.0 was negligible as it did not show enzymatic activity.
The native endoglucanase by T. reesei also showed the
same optimum pH (Li et al. 2013). The study conducted
by Boonvitthya et al. (2013) revealed that the production
of crude EGII in P. pastoris was around 10 U/ml under a
controlled condition with the optimum pH at 5 to 6 and the
temperature of 4060 °C.

Endoglucanase activity measurement was using vari
ous temperatures ranging from 30 °C to 70 °C. The opti
mum temperaturewas found to be 40 °C to 50 °C, as shown
in Figure 6. Native endoglucanase also showed a similar
range of optimum temperature, which was at 45 °C to 55
°C (Kamal et al. 2017). The effect of temperature optimum
on enzyme stability is shown in Figure 6. Preincubation
was done at 40 °C and 50 °C with different time intervals
up to 60 min. About 89% of endoglucanase activity was
retained at 40 °C after 60 min, and more than 80% of en
doglucanase activity was retained after 60 min at 50 °C
(Figure 7). Based on the literature, native EGII secreted
from T. reesei retained 60% of its enzymatic activity at 50

131



Tjandra et al. Indonesian Journal of Biotechnology 25(2), 2020, 127‐134

FIGURE5OptimumpHdetermination of endoglucanase II by clone
2. Values are averages of duplo assays; bars indicate SD.

FIGURE 6 Temperature optimum determination of endoglucanase
II by clone 2. Values are averages of duplo assays; bars indicate SD.

FIGURE 7 Legend for Figure 7: Thermal stability determination of
recombinant Endoglucanase II by clone 2. Temperature used were
at 40 °C (red) and 50 °C (black). Values are averages of duplo assays;
bars indicate SD.

°C after 40 min of incubation (Kamal et al. 2017). This ev
idence indicated the thermal stability of our recombinant
EGII is slightly improved compared to native EGII derived
from T. reesei as it can retain 80% endoglucanase activity

after incubation at 50 °C for 60 min.
The result of the thermal stability assay obtained was

slightly lower than the study conducted by Samanta et al.
(2012), which showed that recombinant EGII could retain
relative endoglucanase activity up to 90% at 50 °C. How
ever, this study reported that purified EGII protein showed
24.3 U/mL of enzyme activity after preincubation at 50
°C in pH 5.0, which gave the specific activity of 115.7
U/mg. The specific activity of our recombinant EGII is
higher than the result reported by using the E. coli expres
sion system (Nakazawa et al. 2008).

Nglycosylation, a posttranslational modification
generally occurred in fungi, has important roles in en
zyme stability. A study conducted by Han et al. (2020)
demonstrated that the addition of Nglycosylation at par
ticular amino acid sites has successfully increased the ther
mal stability of recombinant endoglucanase in P. pas
toris. Optimized stabilization is associated with entropy
which mostly dependent on glycosylation sites position
(ShentalBechor and Levy 2008). Generally, glycans at
tached to flexible regions within random coils would re
strict the conformational space and promote entropic re
duction to increase conformational stability at high tem
peratures (Dotsenko et al. 2016; Adney et al. 2009). This
additional targeted Nglycosylation was deserved to be
adopted in our future study to improve the thermal stability
of our recombinant EGII.

Optimization of fermentation is also required to im
prove the expression of P. pastoris by exploring various
carbon and nitrogen sources to enhance microbial growth
and protein expression. Further study to maintain a spe
cific growth rate is also highly suggested by implement
ing a short carbonstarving period through an exponential
feeding strategy.

4. Conclusions

Recombinant EGII proteins were successfully expressed
in the P. pastoris expression system with an optimum in
cubation time of 72 h using fedbatch fermentation. Char
acterization of recombinant EGII using SDSPAGE and
Western blot analyses showed that the EGII protein has
a molecular weight of approximately 52 kDa. The enzy
matic assay demonstrated that the crude enzyme has op
timum activity at pH 5.0, which results in 16.3 and 14.6
U/mL activity at a temperature of 40 °C and 50 °C, re
spectively. The specific activity of recombinant EGII re
sulted in 115.7 U/mg in its optimum pH and temperature.
Moreover, recombinant EGII can maintain 89% of its en
doglucanase activity at 40 °C and more than 80% at 50 °C
for 60min, indicating the improvement in thermal stability
compared to native EGII derived from T. reesei.
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