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ABSTRACT Inhibition of ADP-ribosylation factor 6 messenger RNA (ARF6 mRNA) by microRNA-145 (miR-145), mediated
by Argonaute (AGO) protein, has been found to play essential roles in several types of cancer and cellular processes. This
study aimed to model the molecular interaction between miR-145 and ARF6 mRNA with AGO protein. The sequences
of miR-145 and the 3’ untranslated region (UTR) of ARF6 mRNA were retrieved from miRTarBase, followed by miRNA
target-site and structure predictions were done using RNAhybrid, RNAfold, and simRNAweb, respectively. The interaction
between the miRNA-mRNA duplex and AGO was further assessed via molecular docking, interaction analysis, and dynamics,
using PatchDock Server, PLIP, and VMD/NAMD, respectively. The models between miR-145, predicted target site of ARF6
mRNA, and AGO protein returned stable thermodynamic variables with negative free energy. Specifically, the RNA duplex
had an energy of -19.80 kcal/mol, while the docking had -84.58 atomic contact energy supported by 70 hydrogen bonds
and 14 hydrophobic interactions. However, the stability of the RMSD plot was still unclear due to limited computational
resources. Nevertheless, these results computationally confirm favorable interaction of the three molecules, which can be
utilized for further transcriptomics-based drugs or treatments.
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1. Introduction

ADP ribosylation factor 6 (ARF6) is a small GTPase that
plays a role in diverse cellular processes, including cell
adhesion and migration (Li et al. 2018). Previous stud-
ies found that ARF6 acts as an oncogene, promoting tu-
mor cell invasion in several cancer types (Hashimoto et al.
2004; Eades et al. 2015; Xu et al. 2019). According to
Sabe (2003), the expression of ARF6 would inactivate the
activity of E-cadherin, thus reducing the cell junctions. It
is coupled with an increased N-cadherin expression, which
allows the cells to attach to collagen, a component of ex-
tracellular matrix (Janiszewska et al. 2020). It also plays
arole in the fibroblast growth factor receptor (FGFR) and
Wnt signaling pathways (Mrozik et al. 2018). These pro-
cesses allow the cells to move to the extracellular matrix,
enter the lymphatic/blood systems, and extravasate to form
tumors (Oh et al. 2012). ARF6 expression also corre-
lates with other processes, such as macrophage-mediated
inflammation (Li et al. 2018). The activity of ARF6 is
post-transcriptionally regulated by tumor suppressor miR-
145 (Zeinali et al. 2019) via the binding to the 3’ UTR of
the ARF6 mRNA (Pashaei et al. 2016). However, long
non-coding RNA regulator of reprogramming (lincRNA-

RoR) acts as a natural competitor or sponge for miR-145,
inhibiting the miRNA activity (Eades et al. 2015). This
would lead to the overexpression of ARF6 and eventually
the formation of tumors.

RNA silencing process requires the presence of the
RNA-Induced Silencing Complex (RISC), a ribonucleo-
protein complex that utilizes small RNA as a template
to recognize the complementary sequence of the target
mRNA (Zhang 2013). One major constructor of RISC is
Argonaute (AGO) protein (Zhang et al. 2018), which acts
as an essential effector in post-transcriptional gene silenc-
ing (Li et al. 2014). Structurally, AGO protein consists of
N-terminal, PAZ, MID, and PIWI domains, which are or-
ganized in a bilobal conformation (Djuranovic et al. 2011).
Specifically, the PAZ domain would bind to the 3’ end of
the miRNA, while the 5’ end would anchor to the MID do-
main (Li et al. 2014). The binding of miRNA to the AGO
protein would ’guide’ the AGO-centered RISC to bind
with the complementary mRNA at 3’ UTR region, lead-
ing to mRNA cleavage (Zhang 2013). As AGO protein
plays an important role in RNA silencing, it is crucial to
understand the molecular interaction between these three
molecules. This can be modeled via molecular docking

Indones J Biotechnol 25(2), 2020, 102-108 | DOI 10.22146/ijbiotech.55631
www.jurnal.ugm.ac.id/ijbiotech

Copyright © 2020 THE AUTHOR(S). This article is distributed under a
Creative Commons Attribution-ShareAlike 4.0 International license.


https://dx.doi.org/10.22146/ijbiotech.55631
https://www.jurnal.ugm.ac.id/ijbiotech
https://creativecommons.org/licenses/by-sa/4.0/

Ivan et al.

Indonesian Journal of Biotechnology 25(2), 2020, 102-108

simulation, which will be followed by molecular dynam-
ics simulation to assess the stability of the molecules. By
mimicking the condition of cytoplasm where the miRNA-
mediated gene silencing process mainly occurs (Liu et al.
2018), we can computationally assess the behavior of the
molecules in the real environment. In this study, the
molecular simulations were done between AGO protein
and miR145-ARF6 mRNA duplex, aiming to model the
interaction based on in silico point of view for further de-
velopment of drug and treatments.

2. Materials and Methods

In this study, the pipeline was constructed based on other
similar studies (e.g. Das et al. (2015) and Rath et al.
(2016)). Several adjustments were made to match the re-
quirements of the software with the available computer re-
sources. The complete pipeline is shown in Figure 1.
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| Prediction of miRNA target site by RNAhybrid |
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FIGURE 1 Pipeline of the study.

2.1. Sequence retrieval and structure prediction

The sequences of miR-145 and 3’ UTR region of
ARF6 mRNA were retrieved from miRTarBase under the
‘miRNA’ and ‘Target Gene’ tabs, respectively (acces-
sion ID: MIRT278608) (Chou et al. 2018). After that,
the miRNA target site was predicted by using RNAhy-
brid (Rehmsmeier et al. 2004). The secondary and ter-
tiary structures of miR-145, its predicted target site, and
the miRNA-mRNA duplex were then visualized by using
RNAfold (Lorenz et al. 2011) and simRNAweb (Boniecki
et al. 2015; Magnus et al. 2016), respectively.

2.2. Molecular docking and dynamics

The miRNA molecule was blindly docked with human
AGO-2 protein (PDB ID: 4F3T) to locate the binding
site by using PatchDock Server (Duhovny et al. 2002;
Schneidman-Duhovny et al. 2005), followed by the dock-
ing between the miRNA-mRNA duplex and the protein.
PatchDock Server utilized rigid docking based on the ge-
ometries of the molecules (Schneidman-Duhovny et al.
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2005). As a comparison, the protein was also docked with
its native ligand (miR-20a) by using the same software.
The molecular interaction between the protein-miRNA
and protein-duplex was then assessed by using Protein-
Ligand Interaction Profiler (PLIP) (Salentin et al. 2015).

Lastly, molecular dynamics of the complex were sim-
ulated by using VMD/NAMD pipeline under NVT con-
dition (i.e. constant particle number, volume, and tem-
perature) by following the NAMD Tutorial file (http:/ww
w.ks.uiuc.edu/Research/namd/) (Humphrey et al. 1996;
Phillips et al. 2005). The complex was first solved
into a water box, followed by energy minimization for
1,000 steps at 1 atm (pressure) and 310 K (temperature).
The resulting coordinate files alongside the combination
of protein, nucleotide, carbohydrate, lipid, water, and
CHARMM general force fields were then used for the
analysis with 1,650,000 steps. The CHARMM topology
and parameter files were taken from MacKerell Jr (2001).

All analysis was done under default parameters of each
software (Zhang and Verbeek 2010; Ahirwar et al. 2016;
Lorenz et al. 2016; Magnus et al. 2016) in Windows com-
puter with Intel® Core™ i7-8750H CPU @2.2GHz and
8GB RAM. The tertiary structures of the simulation were
then visualized in the VMD tool and PyMOL (The PyMOL
Molecular Graphics System, Version 2.3.0, Schrodinger,
LLC), respectively. The 2D/3D structure prediction steps
took around 14 days (depends on the online queue), while
the molecular docking and dynamics required one and
seven days, respectively.

3. Results and Discussion

3.1. Sequence retrieval and structure prediction

After the sequences of miR-145 and 3’ UTR of ARF6
was retrieved from the miRTarBase, the miRNA target
site was predicted using RNAhybrid. The predicted site
turned to match the prediction by miRanda (Betel et al.
2008) that is stored in the miRTarBase entry (accession
ID: MIRT278608); there is binding between ARF6 mRNA
and miR-145 at the 956th position of the UTR region,
denoted by 20 pairing nucleotides (Figure 2, yellow-
highlighted areas). Nucleotide bindings are characterized
by hydrogen bonds between A-U (two bonds) and C-G
(three bonds) of the interacting nucleobases. Besides,
the minimum free energy (MFE) of the binding is -28.2
kcal/mol, showing favorable interaction. However, the p-

3’ UTR of ARF6 5 A U C C A 3/
AG GA UUUUGGG AAAACUGGA
UC CU AGGACCC UUUUGACCU
miR-145 3¢ C A

G 5’

FIGURE 2 Prediction of the miR-145 binding site on 3' UTR of ARFé
mRNA. The second line is the part of the first line (ARF6) and the
third line is the part of the fourth line (miR-145). The interacting
nucleotides were placed near to each other and highlighted by yel-
low. U: uracil; A: adenine; G: guanine; C: cytosine.
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TABLE 1 Sequences of miR-145 and its predicted target site on
ARF6 mRNA.

RNA

Sequences

Mature miR-145 GUCCAGUUUUCCCAGGAAUCCCU

Predicted miRNA

. AAGUGACUUUUGGGCAAAACUGGAA
target site
AAGUGACUUUUGGGCAAAACUGGA

MiRNA-mRNA duplex
AGUCCAGUUUUCCCAGGAAUCCCU

value is 1.00. The sequences from Figure 2 are shown in
Table 1. Next, the secondary structures of all RNAs were
predicted by using RNAfold. The resulting dot-bracket
notations (Table 2) were inputted into simRINAweb to pre-
dict the tertiary structure of the RNA molecules. The 2D
and 3D structures of the RNAs were shown in Figure 3.

(a) (b)

(c) (d)

(e) (f)

FIGURE 3 Secondary (a-c) and tertiary structures (d-f) of RNA
molecules. (a,d) miR-145; (b,e) miRNA-target site of ARF6; (c,f)
miRNA-mRNA duplex. The colors of secondary structures denoted
the conserved region concerning the structure based on the base-
pair probability parameter, from O (blue) to 1 (red).
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(@)

(b)

FIGURE 4 Docking result between a. miR-145 and b. miRNA-
mMRNA duplex with AGO protein. The visualization was done by
using PyMOL 2.3.0.

3.2. Molecular docking and dynamics

We did two docking simulations: miR-145 & AGO protein
and miRNA-mRNA duplex & AGO by using PatchDock
Server. The best-scored model with negative thermody-
namic value (Figure 4) was retrieved, with the statistical
result shown in Table 3. Also, the docking result of AGO
protein with its native ligand is showed in Table 3. The
docking between miRNA and AGO protein shows a fa-
vorable interaction, denoted by the negative value of ACE
(-532.40 kcal/mol) and supported by 18 inter-molecular
hydrogen bonds (Table 4a). This also applies to the dock-
ing between miRNA-mRNA duplex and AGO protein (-
84.58 kcal/mol) with 70 inter-molecular hydrogen bonds
and 14 inter-molecular hydrophobic interactions (Table 4b

(a)

(0

FIGURE 5 Molecular dynamics of mir-145 and second target site of
3'UTR of ARF6 mRNA. a. The first frame (initial molecule); b. Last
frame; c. First and last frames. This shows the clear conformational
difference between the initial and last states of the molecule. The
visualization was done by using PyMOL 2.3.0.
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TABLE 2 Secondary structure of RNA molecules.

RNA Dot-bracket Notation Minimum Free Energy (kcal/mol)
Mature miR-145 ()] -1.10
Predicted miRNA targetsite ... [((((em)))N -1.20
MiRNA-mRNA duplex CCCOCCECOCCCeeCcConmMMM-NN -19.80
E(kcal/mol)
T —aser *) RMSD Plot

— VDW
KINETIC
TOTAL
TEMP
PRESSURE
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FIGURE 6 Time series of free energy (A) and RMSD plot (B) of the molecular dynamics simulation with 3,300 ps. The x and y-axis respectively

denoted: a. time and energy (kcal/mol); b. time (ps) and energy (A).

TABLE 3 Docking scores between miRNA-mRNA duplex and the
native ligand (miR-20a) with AGO protein.

Molecule Score Area ACE* Transformation
. -1.28-1.43-0.41
miR-145-AGO 17,016 2,292.10 -532.40
32.93-11.56 43.87
0.380.28 -3.06
RNA 16,712 4,608.80 -84.58 380.28 -3
Duplex-AGO 49.82 70.46 58.33
; 0.03 -0.22 -0.09
Native 18,842 2,488.50 -235.80
ligand-AGO -14.89 6.62 8.00

*ACE: Atomic Contact Energy

and Table 5). Further molecular dynamics of the molecule
is shown in Figure 5, as well as the free energy and RMSD
plot of the protein backbone in Figure 6.

As shown in Figure 6a, the dynamics of conforma-
tional energy (i.e. bond), non-bond energy (i.e. vdW,
electrostatic), and other energies (i.e. kinetic, total, tem-
perature, pressure) of the molecule are stable after a short
initial fluctuation. However, the RMSD of the molecule
might not have reached equilibrium yet (Figure 6b): it
still fluctuates in the range of 2.0 - 2.5A until the end of
the simulation. The previous study showed that wild-type
miRNA-mRNA heteroduplex and AGO complexes stabi-
lized at 1.5A with larger fluctuations when the number
of mismatches increased (Xia et al. 2013). As the inter-
action between miR-145, 3° UTR of ARF6 mRNA, and
AGO was not included in the study (Xia et al. 2013), the
equilibrium point might be higher. To better evaluate the
energy-minimized state, the simulation should be done in
a better computer to accommodate a longer time duration.
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3.3. Discussion

According to Table 2, MFE of miR-145 and ARF6 mRNA
duplex is -19.80 kcal/mol, which is generally lower than
the previous study that comprised of 31 miRNA-mRNA
interactions (Rath et al. 2016). Further docking analysis
shows that there is favorable interaction between AGO-2
protein and miR-145. Interestingly, it has a lower ACE
(-532.40 kcal/mol) than the native ligand of the protein
(miR-20a, -235.780 kcal/mol). This might due to the
structural similarity between miR-20a and miR-145. On
the other hand, miR-regulated ARF6 and AGO have an
ACE of -84.58 kcal/mol. This value is higher than the na-
tive ligand of the protein (miR-20a, -235.780 kcal/mol) as
the protein conformation would best fit its natural ligand,
as well as several siRNAs and miRNAs (Kandeel and Ki-
tade 2013; Rath et al. 2016). Nevertheless, there are 70
hydrogen bonds and 14 hydrophobic interactions between
the two molecules which stabilize the complex.

ARF6 has been found to promote the development of
several types of cancer, for instance, breast cancer (Li et al.
2017). Moreover, several inhibitors have been found to
suppress the activity of ARF6, resulting in the suppression
of cancer invasion and/or metastasis (Li et al. 2017); this
includes ARF6 small interfering RNA (siRNA) (Xu et al.
2015) and miR-145 (Eades et al. 2015). This idea was fur-
ther supported by Ye et al. (2018), showing the inhibition
of breast cancer development by overexpression of miR-
145. Another study confirmed the low level of miR-145
expression among breast cancer patients with different on-
set of age, ranging from very young (<35 years old) until
postmenopausal (>50 years old) patients (Tsai et al. 2018).
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TABLE 4 Intermolecular hydrogen bonds position in: a. AGO protein sequence and miR-145, as well as b. AGO protein sequence and
miRNA-mRNA duplex. Interaction format was written as protein receptor*-location: nucleic acid ligand**-location.

a. AGO protein - miR-145

91:C11 A278:C17 H445:G3 N449:U4 R615:G8 F647:U20
L267:U14 R444:C22 H445:G3 H607:A19 R615:G8 R651:G6

E268:G13 R444:U23 H445:G21 H607:A19 S645:U4 R651:G7

b. AGO protein - miRNA-mRNA duplex

R196:C29 R351:G22 D358:A16 R438:A6 N551:C37 H634:A24 Q757:U35
R196:A30 C352:G22 D358:C15 Q473:G5 R554:A39 R635:G22 T759:U33
Y225:G23 1353:C29 D358:C15 K476:G5 R554:A39 D669:A19 R761:U33
T259:G26 K354:G23 T361:C15 K476:U4 Q558:C7 Q708:U21 R761:U32
K260:U27 K354:G23 $362:C15 D480:G5 Q558:C7 K709:U33 R792:A17
K263:A24 K354:C29 R366:G14 K550:G13 S$561:.C7 R710:C20 R795:U35
L265:A25 K355:C29 T368:U33 K550:G13 N562:C37 R710:U21 A803:A19
R280:A24 K355:A30 D436:C7 K550:C38 D597:C20 R710:G31 Y804:U34
R351:G22 L356:A30 D436:C7 N551:C37 P602:C28 R714:U32 F811:A18
R351:G23 D358:A16 R438:A6 N551:C37 P602:G23 K726:U10 Y815:A16

*Amino acid = R: arginine; E: glutamic acid; Y: tyrosine; T: threonine; K: lysine; L: leucine; C: cysteine; I: isoleucine; D: aspartic acid; S: serine;
Q: glutamine; N: asparagine; P: proline; H: histidine; A: alanine; F: phenylalanine.

**U: uracil; A: adenine; G: guanine; C: cytosine

Besides, the dependency of miR-145 suppression activity
on AGO protein in breast cancer cells had recently been
assessed (Bellissimo et al. 2019).

This study elucidates the regulation of ARF6 by miR-
145 by the assistance of AGO protein based on in silico ap-
proach. The molecular docking shows a strong interaction
between AGO and miR-145. In addition to negative value
of MFE, the presence of hydrophobic aliphatic amino
acids, such as alanine and leucine, provides structural sta-
bility between the molecules, while aromatic amino acids,

TABLE 5 List of hydrophobic interactions between the AGO protein
receptor and the nucleic acid ligand.

Receptor Receptor Ligand Ligand

Number Type* Number Type** Distance
260 Lys 27 U 3.90
263 Lys 25 A 3.72
353 lle 23 G 0.71
354 Lys 29 C 3.78
355 Lys 29 C 2.88
355 Lys 29 C 231
362 Ser 15 C 2.55
436 Asp c 3.99
557 Pro C 3.40
601 Pro 28 C 3.96
602 Pro 28 C 3.44
608 Lys 28 C 3.80
804 Tyr 18 A 3.99
808 Leu 18 A 3.10

*Lys: lysine; lle: isoleucine; Ser: serine; Asp: artic acid; Pro: proline;
Tyr: tyrosine; Leu: leucine
**U: uracil; A: adenine; G: guanine; C: cytosine.

such as histidine and phenylalanine, further support the
complex stability. Furthermore, the interaction between
AGO and the RNA duplex is also supported by strong hy-
drophobic amino acids, namely leucine, isoleucine, ala-
nine, and phenylalanine. Further molecular dynamics af-
firms this stability, with stable dynamics and constant
RMSD energy between 2.0-2.5 A. However, there were
several limitations that we encountered due to the unavail-
ability of (i) reliable 3D structures of RNAs, (ii) RNA-
specific molecular docking and dynamics software, and
(iii) high-performance computer (HPC). As a result, the
procedure was mostly done by using open-source online
software, while the rest was simulated with limited com-
putational power. Nevertheless, these results affirm the
feasibility of molecular inhibition of ARF6 by miR-145
with the assistance of AGO protein. In this end, it is also
emphasized that the high power GPU-based workstation
with high specification of RAM and HDD is sufficient to
conduct the whole computational process. This condition
is mainly assisted by the availability of the High-resolution
GPU in our workstation.

4. Conclusions

This study shows that there is a strong, favorable interac-
tion between miR145, 3° UTR of ARF6 mRNA, and AGO
protein computationally, affirming results from the previ-
ous studies. Future studies should incorporate the inter-
action between ARF6 mRNA and lincRNA-RoR, also, to
complete the RISC molecule, to mimic their interactions
in the real environment. The resulting binding affinity and
stability of the molecules should be incorporated in further
drug development to create a universal drug that mimics
the activity of miR-145 in controlling ARF6 expression.
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