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ABSTRACT Inhibition of ADP‐ribosylation factor 6 messenger RNA (ARF6 mRNA) by microRNA‐145 (miR‐145), mediated
by Argonaute (AGO) protein, has been found to play essential roles in several types of cancer and cellular processes. This
study aimed to model the molecular interaction between miR‐145 and ARF6 mRNA with AGO protein. The sequences
of miR‐145 and the 3’ untranslated region (UTR) of ARF6 mRNA were retrieved from miRTarBase, followed by miRNA
target‐site and structure predictions were done using RNAhybrid, RNAfold, and simRNAweb, respectively. The interaction
between the miRNA‐mRNA duplex and AGOwas further assessed via molecular docking, interaction analysis, and dynamics,
using PatchDock Server, PLIP, and VMD/NAMD, respectively. The models between miR‐145, predicted target site of ARF6
mRNA, and AGO protein returned stable thermodynamic variables with negative free energy. Specifically, the RNA duplex
had an energy of ‐19.80 kcal/mol, while the docking had ‐84.58 atomic contact energy supported by 70 hydrogen bonds
and 14 hydrophobic interactions. However, the stability of the RMSD plot was still unclear due to limited computational
resources. Nevertheless, these results computationally confirm favorable interaction of the three molecules, which can be
utilized for further transcriptomics‐based drugs or treatments.
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1. Introduction

ADP ribosylation factor 6 (ARF6) is a small GTPase that
plays a role in diverse cellular processes, including cell
adhesion and migration (Li et al. 2018). Previous stud
ies found that ARF6 acts as an oncogene, promoting tu
mor cell invasion in several cancer types (Hashimoto et al.
2004; Eades et al. 2015; Xu et al. 2019). According to
Sabe (2003), the expression of ARF6 would inactivate the
activity of Ecadherin, thus reducing the cell junctions. It
is coupled with an increasedNcadherin expression, which
allows the cells to attach to collagen, a component of ex
tracellular matrix (Janiszewska et al. 2020). It also plays
a role in the fibroblast growth factor receptor (FGFR) and
Wnt signaling pathways (Mrozik et al. 2018). These pro
cesses allow the cells to move to the extracellular matrix,
enter the lymphatic/blood systems, and extravasate to form
tumors (Oh et al. 2012). ARF6 expression also corre
lates with other processes, such as macrophagemediated
inflammation (Li et al. 2018). The activity of ARF6 is
posttranscriptionally regulated by tumor suppressor miR
145 (Zeinali et al. 2019) via the binding to the 3’ UTR of
the ARF6 mRNA (Pashaei et al. 2016). However, long
noncoding RNA regulator of reprogramming (lincRNA

RoR) acts as a natural competitor or sponge for miR145,
inhibiting the miRNA activity (Eades et al. 2015). This
would lead to the overexpression of ARF6 and eventually
the formation of tumors.

RNA silencing process requires the presence of the
RNAInduced Silencing Complex (RISC), a ribonucleo
protein complex that utilizes small RNA as a template
to recognize the complementary sequence of the target
mRNA (Zhang 2013). One major constructor of RISC is
Argonaute (AGO) protein (Zhang et al. 2018), which acts
as an essential effector in posttranscriptional gene silenc
ing (Li et al. 2014). Structurally, AGO protein consists of
Nterminal, PAZ, MID, and PIWI domains, which are or
ganized in a bilobal conformation (Djuranovic et al. 2011).
Specifically, the PAZ domain would bind to the 3’ end of
the miRNA, while the 5’ end would anchor to the MID do
main (Li et al. 2014). The binding of miRNA to the AGO
protein would ’guide’ the AGOcentered RISC to bind
with the complementary mRNA at 3’ UTR region, lead
ing to mRNA cleavage (Zhang 2013). As AGO protein
plays an important role in RNA silencing, it is crucial to
understand the molecular interaction between these three
molecules. This can be modeled via molecular docking

Indones J Biotechnol 25(2), 2020, 102‐108 | DOI 10.22146/ijbiotech.55631
www.jurnal.ugm.ac.id/ijbiotech

Copyright © 2020 THE AUTHOR(S). This article is distributed under a
Creative Commons Attribution‐ShareAlike 4.0 International license.

https://dx.doi.org/10.22146/ijbiotech.55631
https://www.jurnal.ugm.ac.id/ijbiotech
https://creativecommons.org/licenses/by-sa/4.0/


Ivan et al. Indonesian Journal of Biotechnology 25(2), 2020, 102‐108

simulation, which will be followed by molecular dynam
ics simulation to assess the stability of the molecules. By
mimicking the condition of cytoplasm where the miRNA
mediated gene silencing process mainly occurs (Liu et al.
2018), we can computationally assess the behavior of the
molecules in the real environment. In this study, the
molecular simulations were done between AGO protein
and miR145ARF6 mRNA duplex, aiming to model the
interaction based on in silico point of view for further de
velopment of drug and treatments.

2. Materials and Methods

In this study, the pipeline was constructed based on other
similar studies (e.g. Das et al. (2015) and Rath et al.
(2016)). Several adjustments were made to match the re
quirements of the software with the available computer re
sources. The complete pipeline is shown in Figure 1.

FIGURE 1 Pipeline of the study.

2.1. Sequence retrieval and structure prediction
The sequences of miR145 and 3’ UTR region of
ARF6 mRNA were retrieved from miRTarBase under the
‘miRNA’ and ‘Target Gene’ tabs, respectively (acces
sion ID: MIRT278608) (Chou et al. 2018). After that,
the miRNA target site was predicted by using RNAhy
brid (Rehmsmeier et al. 2004). The secondary and ter
tiary structures of miR145, its predicted target site, and
the miRNAmRNA duplex were then visualized by using
RNAfold (Lorenz et al. 2011) and simRNAweb (Boniecki
et al. 2015; Magnus et al. 2016), respectively.

2.2. Molecular docking and dynamics
The miRNA molecule was blindly docked with human
AGO2 protein (PDB ID: 4F3T) to locate the binding
site by using PatchDock Server (Duhovny et al. 2002;
SchneidmanDuhovny et al. 2005), followed by the dock
ing between the miRNAmRNA duplex and the protein.
PatchDock Server utilized rigid docking based on the ge
ometries of the molecules (SchneidmanDuhovny et al.

2005). As a comparison, the protein was also docked with
its native ligand (miR20a) by using the same software.
The molecular interaction between the proteinmiRNA
and proteinduplex was then assessed by using Protein
Ligand Interaction Profiler (PLIP) (Salentin et al. 2015).

Lastly, molecular dynamics of the complex were sim
ulated by using VMD/NAMD pipeline under NVT con
dition (i.e. constant particle number, volume, and tem
perature) by following the NAMD Tutorial file (http://ww
w.ks.uiuc.edu/Research/namd/) (Humphrey et al. 1996;
Phillips et al. 2005). The complex was first solved
into a water box, followed by energy minimization for
1,000 steps at 1 atm (pressure) and 310 K (temperature).
The resulting coordinate files alongside the combination
of protein, nucleotide, carbohydrate, lipid, water, and
CHARMM general force fields were then used for the
analysis with 1,650,000 steps. The CHARMM topology
and parameter files were taken from MacKerell Jr (2001).

All analysis was done under default parameters of each
software (Zhang and Verbeek 2010; Ahirwar et al. 2016;
Lorenz et al. 2016; Magnus et al. 2016) in Windows com
puter with Intel® Core™ i78750H CPU @2.2GHz and
8GB RAM. The tertiary structures of the simulation were
then visualized in theVMD tool and PyMOL (The PyMOL
Molecular Graphics System, Version 2.3.0, Schrodinger,
LLC), respectively. The 2D/3D structure prediction steps
took around 14 days (depends on the online queue), while
the molecular docking and dynamics required one and
seven days, respectively.

3. Results and Discussion

3.1. Sequence retrieval and structure prediction
After the sequences of miR145 and 3’ UTR of ARF6
was retrieved from the miRTarBase, the miRNA target
site was predicted using RNAhybrid. The predicted site
turned to match the prediction by miRanda (Betel et al.
2008) that is stored in the miRTarBase entry (accession
ID:MIRT278608); there is binding betweenARF6mRNA
and miR145 at the 956th position of the UTR region,
denoted by 20 pairing nucleotides (Figure 2, yellow
highlighted areas). Nucleotide bindings are characterized
by hydrogen bonds between AU (two bonds) and CG
(three bonds) of the interacting nucleobases. Besides,
the minimum free energy (MFE) of the binding is 28.2
kcal/mol, showing favorable interaction. However, the p

FIGURE2Prediction of themiR‐145 binding site on 3’ UTRofARF6
mRNA. The second line is the part of the first line (ARF6) and the
third line is the part of the fourth line (miR‐145). The interacting
nucleotides were placed near to each other and highlighted by yel‐
low. U: uracil; A: adenine; G: guanine; C: cytosine.
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TABLE 1 Sequences of miR‐145 and its predicted target site on
ARF6 mRNA.

RNA Sequences

Mature miR‐145 GUCCAGUUUUCCCAGGAAUCCCU
Predicted miRNA
target site AAGUGACUUUUGGGCAAAACUGGAA

MiRNA‐mRNA duplex
AAGUGACUUUUGGGCAAAACUGGA
AGUCCAGUUUUCCCAGGAAUCCCU

value is 1.00. The sequences from Figure 2 are shown in
Table 1. Next, the secondary structures of all RNAs were
predicted by using RNAfold. The resulting dotbracket
notations (Table 2) were inputted into simRNAweb to pre
dict the tertiary structure of the RNA molecules. The 2D
and 3D structures of the RNAs were shown in Figure 3.

(a) (b)

(c) (d)

(e) (f)

FIGURE 3 Secondary (a‐c) and tertiary structures (d‐f) of RNA
molecules. (a,d) miR‐145; (b,e) miRNA‐target site of ARF6; (c,f)
miRNA‐mRNA duplex. The colors of secondary structures denoted
the conserved region concerning the structure based on the base‐
pair probability parameter, from 0 (blue) to 1 (red).

(a) (b)

FIGURE 4 Docking result between a. miR‐145 and b. miRNA‐
mRNA duplex with AGO protein. The visualization was done by
using PyMOL 2.3.0.

3.2. Molecular docking and dynamics
Wedid two docking simulations: miR145&AGOprotein
and miRNAmRNA duplex & AGO by using PatchDock
Server. The bestscored model with negative thermody
namic value (Figure 4) was retrieved, with the statistical
result shown in Table 3. Also, the docking result of AGO
protein with its native ligand is showed in Table 3. The
docking between miRNA and AGO protein shows a fa
vorable interaction, denoted by the negative value of ACE
(532.40 kcal/mol) and supported by 18 intermolecular
hydrogen bonds (Table 4a). This also applies to the dock
ing between miRNAmRNA duplex and AGO protein (
84.58 kcal/mol) with 70 intermolecular hydrogen bonds
and 14 intermolecular hydrophobic interactions (Table 4b

(a) (b)

(c)

FIGURE 5Molecular dynamics of mir‐145 and second target site of
3’UTR of ARF6 mRNA. a. The first frame (initial molecule); b. Last
frame; c. First and last frames. This shows the clear conformational
difference between the initial and last states of the molecule. The
visualization was done by using PyMOL 2.3.0.
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TABLE 2 Secondary structure of RNA molecules.

RNA Dot‐bracket Notation Minimum Free Energy (kcal/mol)

Mature miR‐145 .............(((....))) ‐1.10
Predicted miRNA target site ........(((((......))))). ‐1.20
MiRNA‐mRNA duplex .((.((.(((((((.((((((((....))))))))))))))).)).)) ‐19.80

(a)

(b)

FIGURE 6 Time series of free energy (A) and RMSD plot (B) of themolecular dynamics simulationwith 3,300 ps. The x and y‐axis respectively
denoted: a. time and energy (kcal/mol); b. time (ps) and energy (Å).

TABLE 3 Docking scores between miRNA‐mRNA duplex and the
native ligand (miR‐20a) with AGO protein.

Molecule Score Area ACE* Transformation

miR‐145‐AGO 17,016 2,292.10 ‐532.40
‐1.28 ‐1.43 ‐0.41
32.93 ‐11.56 43.87

RNA
Duplex‐AGO 16,712 4,608.80 ‐84.58

0.38 0.28 ‐3.06
49.82 70.46 58.33

Native
ligand‐AGO 18,842 2,488.50 ‐235.80

0.03 ‐0.22 ‐0.09
‐14.89 6.62 8.00

*ACE: Atomic Contact Energy

and Table 5). Further molecular dynamics of the molecule
is shown in Figure 5, as well as the free energy and RMSD
plot of the protein backbone in Figure 6.

As shown in Figure 6a, the dynamics of conforma
tional energy (i.e. bond), nonbond energy (i.e. vdW,
electrostatic), and other energies (i.e. kinetic, total, tem
perature, pressure) of the molecule are stable after a short
initial fluctuation. However, the RMSD of the molecule
might not have reached equilibrium yet (Figure 6b): it
still fluctuates in the range of 2.0  2.5Å until the end of
the simulation. The previous study showed that wildtype
miRNAmRNA heteroduplex and AGO complexes stabi
lized at 1.5Å with larger fluctuations when the number
of mismatches increased (Xia et al. 2013). As the inter
action between miR145, 3’ UTR of ARF6 mRNA, and
AGO was not included in the study (Xia et al. 2013), the
equilibrium point might be higher. To better evaluate the
energyminimized state, the simulation should be done in
a better computer to accommodate a longer time duration.

3.3. Discussion

According to Table 2, MFE of miR145 and ARF6 mRNA
duplex is 19.80 kcal/mol, which is generally lower than
the previous study that comprised of 31 miRNAmRNA
interactions (Rath et al. 2016). Further docking analysis
shows that there is favorable interaction between AGO2
protein and miR145. Interestingly, it has a lower ACE
(532.40 kcal/mol) than the native ligand of the protein
(miR20a, 235.780 kcal/mol). This might due to the
structural similarity between miR20a and miR145. On
the other hand, miRregulated ARF6 and AGO have an
ACE of 84.58 kcal/mol. This value is higher than the na
tive ligand of the protein (miR20a, 235.780 kcal/mol) as
the protein conformation would best fit its natural ligand,
as well as several siRNAs and miRNAs (Kandeel and Ki
tade 2013; Rath et al. 2016). Nevertheless, there are 70
hydrogen bonds and 14 hydrophobic interactions between
the two molecules which stabilize the complex.

ARF6 has been found to promote the development of
several types of cancer, for instance, breast cancer (Li et al.
2017). Moreover, several inhibitors have been found to
suppress the activity of ARF6, resulting in the suppression
of cancer invasion and/or metastasis (Li et al. 2017); this
includes ARF6 small interfering RNA (siRNA) (Xu et al.
2015) and miR145 (Eades et al. 2015). This idea was fur
ther supported by Ye et al. (2018), showing the inhibition
of breast cancer development by overexpression of miR
145. Another study confirmed the low level of miR145
expression among breast cancer patients with different on
set of age, ranging from very young (<35 years old) until
postmenopausal (>50 years old) patients (Tsai et al. 2018).
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TABLE 4 Intermolecular hydrogen bonds position in: a. AGO protein sequence and miR‐145, as well as b. AGO protein sequence and
miRNA‐mRNA duplex. Interaction format was written as protein receptor*‐location: nucleic acid ligand**‐location.

a. AGO protein ‐ miR‐145

91:C11 A278:C17 H445:G3 N449:U4 R615:G8 F647:U20
L267:U14 R444:C22 H445:G3 H607:A19 R615:G8 R651:G6
E268:G13 R444:U23 H445:G21 H607:A19 S645:U4 R651:G7

b. AGO protein ‐ miRNA‐mRNA duplex

R196:C29 R351:G22 D358:A16 R438:A6 N551:C37 H634:A24 Q757:U35
R196:A30 C352:G22 D358:C15 Q473:G5 R554:A39 R635:G22 T759:U33
Y225:G23 I353:C29 D358:C15 K476:G5 R554:A39 D669:A19 R761:U33
T259:G26 K354:G23 T361:C15 K476:U4 Q558:C7 Q708:U21 R761:U32
K260:U27 K354:G23 S362:C15 D480:G5 Q558:C7 K709:U33 R792:A17
K263:A24 K354:C29 R366:G14 K550:G13 S561:C7 R710:C20 R795:U35
L265:A25 K355:C29 T368:U33 K550:G13 N562:C37 R710:U21 A803:A19
R280:A24 K355:A30 D436:C7 K550:C38 D597:C20 R710:G31 Y804:U34
R351:G22 L356:A30 D436:C7 N551:C37 P602:C28 R714:U32 F811:A18
R351:G23 D358:A16 R438:A6 N551:C37 P602:G23 K726:U10 Y815:A16

*Amino acid = R: arginine; E: glutamic acid; Y: tyrosine; T: threonine; K: lysine; L: leucine; C: cysteine; I: isoleucine; D: aspartic acid; S: serine;
Q: glutamine; N: asparagine; P: proline; H: histidine; A: alanine; F: phenylalanine.
**U: uracil; A: adenine; G: guanine; C: cytosine

Besides, the dependency of miR145 suppression activity
on AGO protein in breast cancer cells had recently been
assessed (Bellissimo et al. 2019).

This study elucidates the regulation of ARF6 by miR
145 by the assistance of AGO protein based on in silico ap
proach. The molecular docking shows a strong interaction
between AGO and miR145. In addition to negative value
of MFE, the presence of hydrophobic aliphatic amino
acids, such as alanine and leucine, provides structural sta
bility between the molecules, while aromatic amino acids,

TABLE5 List of hydrophobic interactions between theAGOprotein
receptor and the nucleic acid ligand.

Receptor
Number

Receptor
Type*

Ligand
Number

Ligand
Type** Distance

260 Lys 27 U 3.90
263 Lys 25 A 3.72
353 Ile 23 G 0.71
354 Lys 29 C 3.78
355 Lys 29 C 2.88
355 Lys 29 C 2.31
362 Ser 15 C 2.55
436 Asp 7 C 3.99
557 Pro 7 C 3.40
601 Pro 28 C 3.96
602 Pro 28 C 3.44
608 Lys 28 C 3.80
804 Tyr 18 A 3.99
808 Leu 18 A 3.10

*Lys: lysine; Ile: isoleucine; Ser: serine; Asp: artic acid; Pro: proline;
Tyr: tyrosine; Leu: leucine
**U: uracil; A: adenine; G: guanine; C: cytosine.

such as histidine and phenylalanine, further support the
complex stability. Furthermore, the interaction between
AGO and the RNA duplex is also supported by strong hy
drophobic amino acids, namely leucine, isoleucine, ala
nine, and phenylalanine. Further molecular dynamics af
firms this stability, with stable dynamics and constant
RMSD energy between 2.0–2.5 Å. However, there were
several limitations that we encountered due to the unavail
ability of (i) reliable 3D structures of RNAs, (ii) RNA
specific molecular docking and dynamics software, and
(iii) highperformance computer (HPC). As a result, the
procedure was mostly done by using opensource online
software, while the rest was simulated with limited com
putational power. Nevertheless, these results affirm the
feasibility of molecular inhibition of ARF6 by miR145
with the assistance of AGO protein. In this end, it is also
emphasized that the high power GPUbased workstation
with high specification of RAM and HDD is sufficient to
conduct the whole computational process. This condition
is mainly assisted by the availability of the Highresolution
GPU in our workstation.

4. Conclusions

This study shows that there is a strong, favorable interac
tion between miR145, 3’ UTR of ARF6 mRNA, and AGO
protein computationally, affirming results from the previ
ous studies. Future studies should incorporate the inter
action between ARF6 mRNA and lincRNARoR, also, to
complete the RISC molecule, to mimic their interactions
in the real environment. The resulting binding affinity and
stability of the molecules should be incorporated in further
drug development to create a universal drug that mimics
the activity of miR145 in controlling ARF6 expression.
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