Molecular cloning of gene fragment encoding 4-coumarate: Coenzyme A ligase of Sengon (*Paraserianthes falcataria*)

N. Sri Hartati ¹², Enny Sudarmonowati¹, Suharsono², and Kurnia Sofyan³

Research Centre for Biotecnology –Indonesian Institute of Sciences (LIPI), Bogor, Indonesia Departement of Biology-Bogor Agriculture University (IPB), Bogor, Indonesia Departement of Forestry-Bogor Agriculture University (IPB), Bogor, Indonesia

Abstract

4-coumarate:Coenzyme A ligase (4CL) plays an important role in lignin biosynthetic pathway that catalyzed the activation of coumaric acid, caffeic acid or ferulic acid to be a syringil monomer. Lignin biosynthesis control through 4CL down regulating would support lower lignin wood production. The objective of this study was to clone conserved region cDNA of gene encoding 4CL. Gene fragment isolation was conducted by means of reverse transcriptase polymerase chain reaction (RT-PCR) using degenerate heterologous primer. The RT-PCR products were purified, sequenced and analyzed to select the highly homologous fragment to 4CL. BLASTanalysis result showed that deduction of amino acid sequences from one of two RT-PCR product nucleotide was highly homologous with the 4CL conserved region from *Rubbus ideaus*, *Oryza sativa*, *Populus tomentosa*, *Populus balsamifera*, *Betulla platyphilla*, *Nicotiana tabacum*, and *Arabidopsis thaliana* with identity ranging from 78-90%.

Key words: 4-coumarate: Coenzyme A ligase, lignin, sengon

Introduction

Lignin is a major component of wood, the most widely used raw material for the production of pulp and paper. Lignin is a complex phenolic aromatic polymer that constitutes 20–32% of woody plant cell walls, being the second most abundant biopolymer after cellulose. It is deposited in cell walls of certain supportive and water conductive tissues, providing rigidity and structural support to cell wall polysaccharides (cellulose, hemicellulose, pectin) (Harakava, 2005; Bhuiyan et al., 2009; Wagner et al., 2009). During the manufacture of high-quality paper, lignin is chemically separated from the polysaccharide components of wood during

Most of the enzymes required for the synthesis of lignin precursor have been characterized, such as phenylalanine ammonia-lyase (PAL) (Kao et al., 2002), omethyltransferase (CCoAoMT) (Ibrahim et al., 1998; He et al., 1998), 4-coumarate CoA ligase (4CL) (Lee et al., 1997; Allina et al., 1998; Ehlting et al., 1999; Cukovic et al., 2000; Ehlting et al., 2001; Rogers et al., 2005; Wagner et al., 2009), cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) (Ralph et al., 1998). These enzymes are involved in the initiation of lignin biosynthetic pathway by conversion of these to monolignol formation. coumarate:Coenzyme A ligase (4CL) is an enzyme that functions early in the general phenylpropanoid pathway by producing the

pulping and bleaching reactions. Lignin extraction needs large quantities of chemicals and energy leading to a poor environmental image for the industry (Baucher *et al.*, 2003).

^{*}corresponding author: N.Sri Hartati, Research Centre for Biotechnology, Indonesian Institute for Science, Jl.Cibinong-Bogor, Indonesia, email: hartati12@yahoo.com

monolignol precursor p-coumaroyl-CoA. This enzyme catalyzes the activation of conversion of coumaric acid, cafeic and ferulic into syringil monomer (Harding et al., 2002). This catalytic process is characterized by the formation of a coumaroyl-adenylate intermediate, which is subsequently converted to the corresponding CoA ester. The activated phenolic acids serve as precursors for the biosynthesis of numerous plant secondary products such as flavonoids, isoflavonoids, coumarins, lignin, suberin, and wall-bound phenolics (Schneider, 2003). These compounds are important for plant growth and development by providing mechanical support and rigidity to cell walls, attracting insects for pollination, or protecting against biotic and abiotic stresses (Boudet et al., 2003).

Concerning the important role of 4-CL in many plant species, gene sequence analysis, protein activity and structure would be interesting subject. This enzyme has been isolated and purified ranging from annual plant species such as *Arabidopsis thaliana* (Lee, et al., 1997; Costa, 2005), Glycine max (Lindermayr, 2002), Oryza sativa (Lee, et al., 2007) to woody plant species such as pine (Pinus taeda) (Voo, 1995) and poplar (Populous tremuloides) (Hu, et al., 1998). Molecular cloning of 4CL of cDNA Pinus taeda consisted of 537 amino acid sequence (Zhang, 1997).

Sengon (*P. falcataria* L. Nielsen) which belongs to family leguminoseae and sub family of Mimosoideae is one of the recommended species for industrial timber estates. This species has the ability to grow in poor or marginal land and could make the land fertile as it is categorized as nitrogenfixing tree species (Binkley et al., 2003; Shively et al., 2004; Kurinobu et al., 2007; Siregar et al., 2007). This fast-growing native of the Moluccan Islands of Indonesia in the South Pacific has been widely planted throughout many tropical regions of the world and has become naturalized in many of

them. *P. falcataria* is known as multipurpose tree with uses including pulp, fiber and particle board, packing cases, boxes, matches, chop sticks and light furniture. Its wood is soft and generally light in color with a reported specific gravity range of 0.20 to 0.49 (NAFTA, 1989).

The benefits of removing as much lignin as possible in order to avoid residual lignin. which causes discoloration and reduces paper brightness, have to be balanced against the loss of pulp quality and strength as the result when cellulose is significantly degraded. An alternative idea has been to modify lignin content or structure in genetically engineered trees to reduce lignin production or to make lignin easier to extract (Baucher, et al., 2003). Genetic engineering of low lignin tree would support supply of more suitable raw material for the pulp and paper industry. A wide variety of transgenic plants with altered expression of one or more lignification genes in both models economically important species have become available, with the principal knowledge of the lignin biosynthetic pathways and modifying lignin content (Church and Galston, 1988; Kajita, et al., 2002; Wagner, et al., 2009).

Although the role of 4CL has been studied in a large number of plants species, there has been little reported about molecular study of 4CL in tropical woody plants. The aim of the study was to isolate and characterize the 4CL gene of sengon using RT-PCR technique. Cloning and sequencing of 4CL could be used to construct 4CL antisense to repress lignin content in sengon. Low lignin wood would have important economic and environmental benefits.

Materials and methods RNA extraction and RT-PCR

Total RNA was isolated from the xylem of 2 months old sengon seedling using Trizol reagent (Invitrogen). RT-PCR reactions were carried out in a one step reaction in which

cDNA synthesis and Reverse Transcription reactions were performed directly in the same tube using a kit of ready to go RT-PCR (Amersham). The bead of ready to go RT-PCR was diluted with 43.9 ml RNase free water (Gibco BRL) and then 1.1 ml of the first strand of pd(T) 12-18 concentrations (0.5 µg /ml), reverse and forward degenerate primers (10 pmole), and 5 mg RNA template were added into the bead solution. The solution was then incubated at 42°C for 30 min for cDNA synthesis. Reaction was stoped at 95°C for 5 min for PCR reaction. Degenerate primer pairs used were DP-F (5'-CCTCATCTTCCGGTCCAAGYTNCMNGA YAT-3') and DP-R (5'-CGCAGGTCCTTCCGCARDATYYYNCC-Primers were designed according to CODEHOP techniques (Consensusdegenerate hybrid oligonucleotide primers) based on alligment of 4CL gene sequences of some plants Arabidopsis thaliana, parsley (Petrocelinum crispum), vanilla (Vanilla planifolia), Solanum tuberosum, tobacco (Nicotiana tabacum), Pinus taeda and Oryza sativa. PCR condition were: 95°C, 5 min (pre-PCR); 95°C,45 seconds; 50°C - 56.8°C (annealing temperature), 45 seconds and 72°C. 60 seconds.

Sequence analysis and cloning of RT-PCR product

RT-PCR products were purified according to the Sephaglas Brandprep kit protocol (Ammersham). The purified fragments were then subjected to sequence analysis by using fluorescent automated sequencing with ABI Prism ™. Competent cell preparation of *Escherichia coli* DH5 a and bacterial transformation were carried out according to Tomley (1996). The purified RT-PCR product was cloned into PGEM ®-T Easy cloning vector.

Results and Discussion Isolation of total RNA

Electrophoresis of total RNA of sengon seedling xylem was carried out to determine the RNA integrity. The isolated RNA showed the high quality RNA indicated by the non degraded ribosomal RNA 28S and 18S bands (Figure 1). The result showed that RNA of sengon could be used for RT-PCR analysis. RT-PCR technique was carried out through one step RT-PCR in which synthesized cDNA as DNA template to further PCR reaction using specific designed primer of 4CL directly in the same tube.

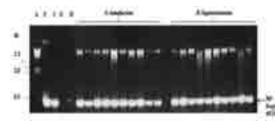


Figure 1. Total RNA of 2 months old sengon seedling xylem

RT-PCR analysis

CODEHOP technique was applied to design degenerate primer of 4CL (Rose et al., 1998). Each primer consist of a short 3' degenerate core region and a longer 5' consensus clamp region. Only 3 - 4 higly conserved amino acid residues are necessary for design of the core, which is stabilized by the clamp during annealing to the template molecules. During later rounds of amplification, the non-degenerate clamp permits stable annealing to the product molecules. Figure 2 showed the design of degenerate 3' amino acid core and 5' region consensus clamp as basic of designing hybrid *degenerate-consensus* primer to amplify 4CL gene fragment of sengon.

```
|4CL1 ARATH
                              33) DVIFRSKLPDIYIPNHLSLHDYIFQNIS
4CL2_ARATH
4CL4_ARATH
                              33) DVIFRSRLPDIYIPNHLPLHDYIFENIS
                                   DFIFRSKLPDIFIPHHLPLTDYVFQRFS
DLIFRSKLPDIYIPKHLPLHTYCFENIS
4CL1_PETC.
4CL2_PETCR
                                   DLIFRSKLPDIYIPKHLPLHTYCFENIS
4CL_VANPL
4CL1_SOLTU
4CL2_SOLTU
                                  DIIFRSKLPDIYIPKNLPLHSYCFENIS
DLIFRSKLPDIYIPKHLPLHSYCFENLS
                                  DLIFRSKLPDIYIPKHLPLHSYCFENLS
|4CL1_TOBAC

4CL2_TOBAC

|4CL_PINTA
                                  DLIFRSKLPDIYIPKHLPLHSYCFENIS
                                   EHLYRSKLPDIEISDHLPLHSYCFERVA
4CL2_SOYBN
|4CL3_ARATH
|4CL2_ORYSA
                              331
                                   SHVFKSKLPDIPISNHLPLHSYCFONLS
                                   VTVFRSKLPDIDIPSHLPLHEYCFARAA
4CL1 ORYSA
                              33) EIIFRSKLODIAITNTLPLHRYCFERLP 100
```

Block primer forward

```
H I F R S K L P D I Oligo:5'-CCTCATCTTCCGGTCCAAGytncmngayat-3' degen=128 temp=60.6
```

```
4CL4_ARATH (545) SQLTEDDVKSYVNKQVVYHKRIKMVFFIEVIFKAVSGKILKRDLRAKLE 88
4CL2_PETC. (545) FTTTEEBIKGPVSKQVYYKRTRIKMVFFIEVIFKAVSGKILKRDLRAKLE 84
4CL2_DETCR (545) FTTTEEBIKGPVSKQVYYKRIKERVFFVDAIFKSSGKILKRDLRAKLA 55
4CL2_SOLTU (545) STITEBEKRDIKGPISKQVIFKRIKNNFFVPAIFKSSGKILKRDLRAKLA 53
4CL1_SOLTU (545) STITEBEKRDISKQVIFKRIKKNFFVPAIFKSSGKILKRDLRAKLA 49
4CL2_SOLTU (545) STITEBEKRDISKQVIFFKRIKNFFVPAIFKSSGKILKRDLRAKLA 49
4CL2_SOLTU (545) STITEBEKRDISKQVIFFKRIKNFFVPAIFKSSGKILKRDLRAKLA 49
4CL2_SOLTU (545) STITEBEKRDISKQVIFFKRIKNFFVPAIFKSSGKILKRDLRAKLA 48
4CL2_SOVEN (545) STITEBEKRDISKQVIFFKRIKNFFVPAIFKSSGKILKRDLRAKLA 48
4CL2_SOVEN (545) STITEBEKRDIFKSKVIFFKRIKFVFVPAIFKSSGKILKRDLRAKLA 48
4CL2_SOVEN (545) STITEBEKRDIFKSKVIFFKRIKFVFVPAIFKSSGKILKRDLRAKLA 48
4CL2_SOVEN (545) NOTTEBEDVKRIVATEVAIFKSVFVPAIFKSSGKILKRDLRAKLE 67
4CL2_CRYSA (545) SDITEBEKRYFVARGKVFVFKRIKFVFVPAIFKSSGKILKRDLRAKLE 67
4CL2_CRYSA (545) SDITEBEKRYFVARGKVFVFKRIKFVFVPAIFKSSGKILKRDLRAKLE 67
4CL2_CRYSA (545) SDITEBEKRYFVARGKVFVFKRIKFVFVPAIFKSSGKILKRDLRAKLE 67
4CL2_CRYSA (545) SDITEBESIKEFISKOVFYKRIKFVFVPAIFKSSGKILKRDLRAKLE 67
4CL2_CRYSA (545) SDITEBESIKEFISKOVFYKRIKFVFVPAIFKSFYFVPAIFKSTFVPAIFKSTFVPAIFKSTFVPAIFKSTFVPAIFKSTFVPAIFKSTFVPAIFKSTFVPAIFKSTFVPAIFKSTFVPA
```

Primer REVERSE

G K I L R K D L R centtytadraCGCCTTCCTGGACGC oligo:5'-CGCAGGTCCTTCCGCardatyttnce-3' degen=48 temp=63.3

Figure 2. Primer design strategy of hybrid core degenerate-consensus clamp to ampify 4CL gene fragment of sengon based on 4CL of A. thaliana, peterseli (Petrocelinum crispum), vanilla (Vanilla planifolia), potato (Solanum tuberosum), tobacco (N. tabacum), Pinus taeda and rice (O. sativa) sequences.

Annealing temperatures gradients ranging from 50°C to 56.8°C were optimized to obtain optimum PCR condition. RT-PCR products of 300 to 500 bp were revealed at annealing temperature of 52.2 °C and 54,4 °C. The two bands of PCR product obtained at annealing temperature of 54,4 °C (Figure 3) were then isolated and separated prior to sequence analysis (Figure 4). RT-PCR technique also using degenerate and non degenerated primers has been widely used to isolate another gene such as carotenoid biosynthetic pathway gene in wild and cultivated Solanum lycopersicon (Araújo et al., 2007), lettuce (Lactuca sativa) aminocyclopropane-1-carboxylic acid (ACC) synthase (Takahashi et al., 2003), ferns (Adiantum capillus-veneris) phosphoglucose isomerase (PgiC) (Ishikawa et al., 2002), and oil palm (Elaeis guineensis) ACCase subunit biotin carboxilase (Budiani, et al., 2006).

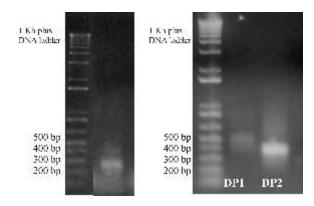


Figure 3. The RT-PCR amplification product of 300 and 500 bp generated by degenerate primer at annealing temperature of 54,4°C for 45 seconds and 60 seconds of extension (a) and separated PCR product by using sephaglass band prep kit (b).

Sequence analysis

The sequencing result obtained of RT-PCR product using degenerate primer (342 bp) and its translated amino acid are shown in Figure 5. Analysis of that sequence using BLAST N and Blast P (Table 1) for the amino acid sequence showed that fragment of one of the RT-PCR product namely DP2 had a high homology with the 4 CL of many plant species such as A. thaliana, Medicago truncatula, Populus tomentosa, Populus balsamivera, Betulla platyphylla with 78% - 90% identity. The 4CL full length sequence size of Glycine max (Uhlman and Ebel, 1993), P. crispum (Lozoya et al.,1988), A. thaliana (Shockey et al., 2003), Pinus radiata (Wagner, 2009) and Solanum tuberosum (Becker et al., 1991) ranged from 1021 bp to 4021 bp.

Although 4CL putative fragments of sengon showing only a short sequence, this result would be useful for further experiments to create antisense construct to suppress expression of 4CL gene. Unlike gene overexpression that requires full length sequence, mRNA gene fragment would be effective to repress the amino acid translation process through interfering with mRNA product by doubled stranded hybrid mRNA complement of sense and antisense mRNA at certain locations.

5' CCC CGG	GC TT		CAC													
Pro A	g Gly															
CCG G		TCG														
Pro G	y Glu	Ser	Ala	Phe	Leu	Ile	Leu	Arg	Val	Val	Val	His	Gly	Arg	Phe	Gln
TTG G																
Leu V																
TTG G	C CGA		CGG	AGA	GTC	CCT	TTA	AGA	AGC	TGG	CCT	TTG	GAG	GGT	ACC	TCC
Leu A																
Leu A.			-	-				-		-				-		
GCA T	C CTA		AGC	AAG	GGA	GGT	CTA	GTT	CGT	AAA	CGG	AAT	AAA	CCA	ACA	AGT
Ala T																
CGG G	G ACC		GAG	AAA	CGC	CTA	CCT	CCT	CCA	AGA	AAG	ATA	AAA	ACG	AAA	ACA
Arg G																
	333			342												
CCT A	TTA	CCT	TTT	GTT		3'										
	r Leu															

Figure 4. Putative sengon cDNA 4CL partial sequences obtained from RT-PCR product using degenerate primer

Table 1. BLAST P results of sengon (*P. falcataria*) translated amino acid sequence obtained from RT-PCR

Gene bank number	Enzyme	Organism	Score (bits)	E value
AAG43823.1	4-Coumarate:CoA ligase	Capsicum annuum	39.7	0.099
AAD40665.1	4-Coumarate:CoA ligase	Solanum tuberosum	39.7	0.099
P31685	4-Coumarate:CoA ligase 2	Solanum tuberosum	39.7	0.099
O24145	4-Coumarate:CoA ligase 1	Nicotiana tabacum	39.7	0.099
P14912	4-Coumarate:CoA ligase 1	Petroselinum crispum	39.7	0.099
P31684	4-Coumarate:CoA ligase 1	Solanum tuberosum	39.7	0.099
BAA08365.1	4-Coumarate:CoA ligase	Lithospermum erythrohizon	39.2	0.13
AAL02145.1	4-Coumarate:CoA ligase	Populus tomentosa	37.5	0.43
AAC97600.1	4-Coumarate:CoA ligase isoenzyme 2	Glycine max	37.5	0.43
AAK58908	4-Coumarate:CoA ligase 3	Populus balsamifera subsp trichocarpa	37.5	0.43
AAV65114.1	4-Coumarate:CoA ligase	Betulia platyphylia	36.7	0.78
AAC24503.1	4-Coumarate:CoA ligase	Populus tremuloides	36.7	0.78
ABD59789.1	4-Coumarate:CoA ligase	Arnebia euchroma	36.3	1.0
AAP03020.1	4-Coumarate:CoA ligase – like protein	Arabidopsis thaliana	35.8	1.4
BAA07828.1	4-Coumarate:CoA ligase	Nicotiana tabacum	35.8	1.4
AAQ86591.1	4-Coumarate:CoA ligase isoform 5	Arabidopsis thaliana	35.8	1.4
AAP68991.1	4-Coumarate:CoA ligase 2	Salvia miltiorrhiza	34.6	3.4
AAS48417.1	4-Coumarate:CoA ligase 1	Allium cepa	33.7	6.1

Cluster analysis of 4CL putative gene fragment

Cluster analysis of sengon 4CL putative fragments (Figure 5) by using CLUSTAL W software showed that 4CL sengon sequence was a unique cluster. This is probably due to only short sequence being compared to complete fragment of others.

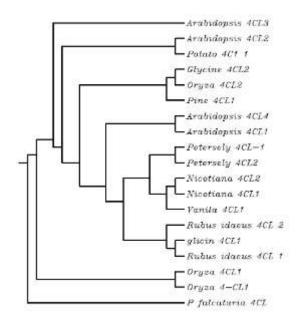


Figure 5. Dendogram of 4CL constructed based on some plants 4CL nucleotide sequences .

Restriction site analysis

Restriction site analysis of 4CL gene fragment showed many restriction sites such as XmaI, SmaI, DraI, NlaIII, KpnI, AvaII, Hinc II indicating that there were different restriction sites of pGEMT easy multiple cloning sites so that 4CL fragments could be easily separated from the vector (Figure 6). Information of enzyme restriction site of sequence would assist further gene construct design.

Display: - All commercial single cutter restriction enzymes

- Main non-overlapping, min. 100 aa ORFs GC=48%, AT=52%

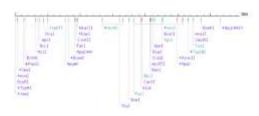


Figure 6. Result of restriction site analysis of 4CL putative gene fragment of sengon by using NEB cutter software (New England Biolabs).

Transformation of putative 4CL putative gene fragment of sengon into TA cloning vector

High homology 4CL RT-PCR product was ligated with PGEM*-T Easy cloning vector and transformed into *Escerichia coli* DH5á. Ligation of linear vector of PGEM*-T Easy without inserting activated *lacZ* encoding b-galaktosidase expressed with IPTG induced agent and converted X-gal into blue indicating product reaction. Fragment of putative 4CL inserted between *Eco*R1 and *Not*1 sites of *lacZ* sequence resulted in inactivated b-galaktosidase gen indicated by white *E. coli* (Figure 7)

Figure 7. PGEM-T Easy vector map restriction site (a) and colony of transformed *E. coli* DH5a harboring recombinant plasmid containing putative fragment *4CL* of sengon (b).

Obtained 4CL putative fragment clone could be used to amplify gene fragment in *E.coli* cells in further work such as fragment characterization, as a probe for full length sequence isolation and gene construct.

Conclusion

The cDNA fragment of 342 bp in size were obtained using degenerate primer designed by CODEHOP technique. This fragment was confirmed as putative 4 CL gene fragment that has high homology with other plants 4CL sequences. This putative 4CL is a fragment which can be potentially be used in genetic engineering study of repression of 4CL expression in order to reduce lignin content of sengon.

References

Allina SM, Pri-hadash A, Theilmann DA, Ellies BE & Douglas CJ. 1998. 4-Coumarate: coenzyme A ligase in hybrid poplar. Properties of native enzymes. Plant Physiol. 116,743-754

Araújo Á, Fonsecal N, Boiteux L. 2007. Nucleotide diversity of a major carotenoid biosynthetic pathway gene in wild and cultivated *Solanum Lycopersicon*) species. Plant Physiol., 19,233-237

Baucher M, Halpin C, Conil MP and Boerjan W. 2003. Genetic engineering and impact on pulping. Crit. Rev. Biochem. Mol. Biol. 38(4),305-350

Becker A, Schulze L, and Hahlbrock K. 1991. Structural comparison, modes of expression, and putative cis-acting elements of the two 4-coumarate: CoA ligase genes in potato. J. Biol. Chem. 266,8551-8559

Bhuiyan N, Selvaraj G, Wei Y, King J. 2009. Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. Jour. Exp. Botany, 60, 509-521

Binkley D, Senock R, Bird S, Cole TG. 2003. Twenty years of stand development in pure and mixed stands of *Eucalyptus* saligna and nitrogen-fixing *Facaltaria* moluccana. Forest Ecol.Manage. 182. 93-102

Boudet A, Kajita S, Pettenati J, Goffner D. 2003. Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Pant Sci. 8, 576-581

Budiani A, Santoso D, Aswidinnor H, Suwanto A. 2006. Aktivitas ACCase mesokarp kelapa sawit dan kloning fragmen gen penyandi ACCase subunit biotin karboksilase. Menara Perkebunan, 74, 33-43

Chukovic D, Ehlting J, VanZipffle J, Douglas C. 2001. Sructure and evolution of 4-coumarate: coenzyme A ligase (4CL) gene families. Biol. Chem. 382, 645-654.

- Church D and Galston W. 1988. 4-Coumarate:Coenzyme A Ligase and isoperoxidase Expression in Zinnia Mesophyll Cells Induced to Differentiate into tracheary Elements. Plant Physiol. 88,679-684.
- Costa M, Bedgar D, Moinuddin S, Kim K, Cardenas C, Cochrane F, Shokey J, Helms G, Amakura Y, Takahashi H, Milhollan J, Davin L, Browse J, Lewis N. 2005. Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation. Phytochem., 66, 2072–2091.
- Ehlting J, Büttner D, Wang Q, Douglas C, Somssich I, Kombrink E. 1999. Three 4-coumarate: coenzyme A ligase (4CL) in *Arabidopsis thaliana* reperesent two evolutionary divergent 4CL classes in angiosperm plants. Plant Jour. 19,9-20
- Ehlting J, Shin J, Douglas C. 2001. Identification of 4-coumarate: coenzyme A ligase (4CL) substrate recognition domains. Plant Jour, 27, 455-465
- Harakava R . 2005. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyp. Gen. Mol.Biol. 28, 601-607
- Harding S, Leshkevich J, Chiang V, Tsai, C. 2002. Differential Substrate Inhibition Couples Kinetically Distinct 4-Coumarate:Coenzyme A Ligases with Spatially Distinct Metabolic Roles in Quaking Aspen. Plant Physiol. 128, 428–438
- He X, Reddy J, Dixon R. 1998. sterss responses in alfalfa (*Medicago sativa* L.XXII.). c DNA cloning and characterization of an elicitor inducible isoflavone 7-Omethyltransferase. Plant Molec. Biol. 36, 43-54

- Hu W, Kawaoka A, Tsai C, Lung J, Asakabe K, Ebinuma H, Chiang V. 1998. Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (*Populus tremuloides*). Proc. Natl. Acad. Sci. USA. 95, 5407–5412
- Ibrahim R, Bruneau A, Bantignies B. 1998. Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol. Biol. 36, 1-10
- Ishikawa H, Watano Y, kano K, Ito M, Kurita S. 2002. Development of primer sets for PCR amplification of the *PGiC* gene in ferns. J. Plant Res. 115, 65-70
- Kajita S, Ishifuji M, Ougiya H, Hara S, Kawabata H, Morohoshi N, Katayama Y. 2002. Improvement in pulping and bleaching properties of xylem from transgenic tobacco plants. Jour. Sci. Food Agric. 82, 1216–1223
- Kao Y, Harding S, Tsai C. 2002. Differential expression of two distinct phenylalanine ammonia-lyase genes ini condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol. 130, 796-807
- Kurinobu S, Prehatin D, Mohammad N, Matsune K, Chigira O. 2007. A provisional growth model with a size-density relationship for a plantation of *Paraserianthes falcataria* derived from measurements taken over 2 years in Pare, Indonesia. Jour. Forest Res. 12, 230-236
- Lee Y, Jeon Y, Lee J, Kim B, Lee C, Ahn J. 2007. Enzymatic Synthesis of Phenolic CoAs Using 4-Coumarate:coenzyme A Ligase (4CL) from Rice. Bull. Korean Chem. Soc. 28, 365-369
- Lee D, Meyer K, Chapple C, Douglas C. 1997.
 Antisense Suppression of 4Coumarate: Coenzyme A Ligase
 Activity in Arabidopsis Leads to
 Altered Lignin Subunit Composition.
 The Plant Cell 9, 1985-1998

- Lindermayr C, Möllers B, Fliegmann J, Uhlmann A, Lottpeich F, Meimberg H, Ebel J. 2002. Divergent members of a soybean (Glycine max L.) 4-coumarate:coenzyme A ligase gene family .Primary structures, catalytic properties, and differential expression. Eur.J.Biochem. 269,1304-1315
- Lozoya E, Hoffmann H, Douglas C, Schulz W, Scheel D, Hahlbrock K.1988. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate: CoA ligase genes in parsley. Eur. J. Biochem. 176, 661-667
- NFTA. 1989. Paraserianthes falcataria Southeast Asia's Growth Champion. NFT Highlights
- Ralph J, Hatfield R, Sederoff R, Mackay J. 1998. Variations in lignin: what do recent studies on lignin-biosynthetic pathway mutans and transgenics revbeal about lignification?. Research Summaries. US Dairy Forage Research Center, 34-38
- Rogers L, Dubos C, Cullis I, Surman C, Poole M, Willment J, Mansfield S, Campbell. 2005. Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. Jour. Exp.Botany 56, 1651-1663
- Rose T, Schulzt E, Henikoff J, Pietrokovski S, McCallum C, Henikoff S. 1998. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences Nucl. Acids Res. 26, 1628-1635
- Schenider K, Vel K, Witzel K, Hamberger B, Schomburg D, Kombrink, E. 2003. The substrate specificity-determining amino acid code of 4-coumarate:CoA ligase. PNAS. 100, 8601–8606
- Shively GE, Zelek CA, Midmore DJ, Nissen TM. 2004. Carbon sequestration in a tropical landscape: an economic model

- to measure its incremental cost. Agroforest Systems, 60, 189-197.
- Shockey JM, Fulda M, Browse J. 2003. Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme a synthetases. Plant Physiol. 132, 1065-1076
- Siregar UJ, Rachmi A, Massijaya MY, Ishibashi N, Ando K. 2007. Economic analysis of sengon (*Paraserianthes falcataria*) community forest plantation, a fast growing species in East Java, Indonesia. Forest Pol. Eco. 9, 822-829
- Takahashi H, Iwasa T, Shinkawa T, Kawahara A, Kurusu T, Inoue, Y. 2003. Isolation and characterization of the ACC synthase genes from lettuce (*Lactuca sativa* L.), and the involvement in Low pH-induced root hair initiation. Plant Cell Physiol. 44,62-69
- Tomley F. 1996. Transformation of *E. coli. In:*Basic DNA and RNA Protocols.
 Harwood A., ed.): Humana Press. New
 Jersey
- Uhlmann A and Ebel J.1993. Molecular cloning and expression of 4-coumarate:coenzyme A ligase, an enzyme involved in the resistance response of soybean (*Glycine max* L.) against pathogen attack. Plant Physiol. 102, 1147-1156
- Voo K, Whetten R, O'Malley D, Sederof R. 1995. 4-Coumarate:Coenzyme A Ligase from Loblolly Pine Xylem. Isolation, Characterization, and Complementary DNA Cloning. Plant Physiol. 108, 85-97
- Wagner A, Donaldson L, Kim H, Phillpis L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J. 2009. Suppression of 4-Coumarate-CoA Ligase in the Coniferous Gymnosperm *Pinus*

radiata. Plant Physiol. 149, 370–383

Zhang X, Chiang V. 1997. Molecular Cloning of 4-Coumarate:Coenzyme A Ligase in Loblolly Pine and the Roles of This Enzyme in the Biosynthesis of Lignin in Compression Wood. Plant Physiol. 113, 65-74