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ABSTRACT Despite Indonesia being a megadiverse country that provides germplasm for breeding to produce improved
future varieties, significant threats are faced related to biodiversity extinction. Such threats, for example habitat degradation
and climate change, which lead to extreme conditions, must be addressed as they have contributed to stresses at the
molecular level and affect plant production and health-related nutrition. Integrated omics approaches have been applied to
address the problems, as well as to produce varieties with superior traits, which are critical factors in achieving improved
plant production and better naturally derived human nutrition. The paper discusses the omics research agenda in Indonesia;
Indonesian biodiversity of nutraceutical plants and how omics can increase its production. Besides, current progress of
omics application in Indonesia, policies and regulations to enhance integrated omics research are elucidated. By applying
these approaches in Indonesia, breeding for better traits to support human needs and improve health quality will be greatly

accelerated in the future.
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1. Introduction

Indonesia, lying on the equator area, is rich in biodiver-
sity. At least two-third non fish vertebrate species as well
as high plant species in the world find their home. The
tropical rain forests in Indonesia provide critical habitats
for endemic species, high economical reservoir, such as
timber and non-timber products that can support the liveli-
hood as well as germplasm source for breeding to produce
improved varieties in the future (Dawson et al. 2014).

Indonesia biodiversity is enriched with the diversity
of native nutritious edible fruits (Hermanto et al. 2013) as
well as pharmaceutical plants (Elfahmi et al. 2014; Pratami
et al. 2024). Plant health-related nutrition refers to the nu-
trients and bioactive compounds in plants that contribute
to the health and well-being of humans when consumed.
These nutrients play crucial roles in preventing chronic
diseases, boosting the immune system, and maintaining
overall health.

The knowledge of the native nutritional and
medicinal plants usage is transferred between generation.
Various studies have documented a long historical
relationship between the use of natural resources and
various ethnic groups in the Indonesia (Katili et al.
2015; Silalahi et al. 2018; Situmorang et al. 2015; Yusro

et al. 2014; Sianipar et al. 2023). However, during the
transfer, this knowledge is prone to be eroded. It is
inevitable that the younger generation does not know and
understand the benefits of species (Gurib-Fakim 2006;
Okui et al. 2021). Good documentation of the plant’s
usage and characteristics until genome level is crucial for
its sustainability.

The plant genetic resources are not only preserved in
forest, but also in agricultural land. However, limited in-
formation on the beneficial species and land mismanage-
ment threatens the existence of genetic resources. The
loss of genetic resources results not only in deteriora-
tion of plant characteristics but also increase of the crop
loss due to new pest and diseases as well as unfavourable
environmental conditions (Temesgen 2021; Salgotra and
Chauhan 2023). The changes of global meteorogical
pattern characterized by rising temperatures, unpredicted
rainfall, frequent drought and unexpected flood threat the
plant growth and yield (Raza et al. 2019; Chele et al. 2024).

As the population increases, there will be more de-
mand on food. To increase food supply for a growing
population and enhance the health quality at the same
time, breeders have developed new cultivars with higher
yield, as well as enhanced resistance/tolerance to biotic
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and abiotic pressures as well as the production of high
nutrition plants. Abiotic and biotic stresses are perceived
and responded through signaling components (Hastilestari
2021; Hastilestari et al. 2018; Sgherri et al. 2017). This
signal should be captured as early as possible to trigger
defence mechanism and damage mitigation for maintain-
ing their survival and yield. Then, they adapt the changes
through physiological responses (Pantouw et al. 2022;
Hastilestari and Pantouw 2015; Hastilestari 2015).

Herein lies the promise of omics technologies in
supporting plant vigor in dynamic environments. Omics
technologies cover cutting edge scientific techniques such
as genomics, metabolomics, proteomics, transcriptomics
and more (Yang et al. 2021). These technologies not
only create a comprehensive data at molecular level but
also provide tools to understand the pathway as well as
engineer crops suited to the climate change (Roychowd-
hury et al. 2023; Sarfraz et al. 2025). These technologies
have been widely used in many countries, however, the
application in Indonesia that is rich in biodiversity is await-
ing for broader application.

In this article, our focus will be on unlocking potential
germplasm for nutraceutical purposes in Indonesia that is
rich in biodiversity. Then challenges and threats in the
dynamic environment are discussed. Furthermore, how
omics technologies can provide breakthrough in Indonesia
for harnessing food security and public health will be elu-
cidated. Besides, legal and regulations framework will be
presented to protect overutilization of natural germplasm.
This holistic approach is essential to reach the increas-
ing global demand for food and enhancing public health
through better nutrition.

2. Omics research agenda in Indonesia

The key thematic areas dealing with omics in Indonesia
were illustrated in Figure 1. This map consists of 3 clusters
(1) Indonesia, diversity and Jamu; (2) Omics, research and
technology; (3) food, multiomic, omics approach and rice.
This map indicated that omics research in Indonesia was
generated dealing with Jamu (Herbal drink) and diversity.
It was also dealing with omics, research and technology.
This omics research was applied to study food.

3. Potential Diversity for nutraceutical in
Indonesia

3.1. Pharmaceutical plants biodiversity

Indonesia is rich in biopharmaceutical plants, that are uti-
lized as traditional medicine, cooking spices, and natural
cosmetic ingredients. The herbal medicines have many
benefits for the body such as increasing energy and
immunity. There are two types of biopharmaceutical
plants produced in Indonesia namely: rhizome biophar-
maceutical plants which include ginger, galangal, ken-
cur, turmeric, lempuyang, temulawak, temu ireng, temu
kunci, dringo, and non-rhizome biopharmaceutical plants
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include cardamom, kejibeling, mengkudu, sambiloto, and
aloe vera (Gandhi 2024). The production of the main
herbal commodities is depicted in Figure 2.

From Figure 2, it can be noticed that ginger (Zingiber
officinale) and turmeric (Curcuma longa) are commodities
frequently used by the communities. The production
of ginger decreased in 2023 compared to 2022, but the
production of turmeric increased slightly. In Indonesia,
there are 3 types of ginger (”sunti” ginger/red ginger, ele-
phant ginger, and “emprit” ginger) that are widely cul-
tivated in mainly in Java and Sumatera islands (Aryanta
2019). Those type of ginger are usually used for cooking
spice, herbal medicine and drinks (Yulianti et al. 2023).
Essential oil contents in Sunti ginger (red ginger), ele-
phant ginger and emprit ginger are 2.58-2.72%, 0.82—
1.68% and 1.5-3.3% respectively (Yulianti et al. 2023;
Aryanta 2019). The active substances in essential oils,
including: shogaol, gingerol, zingerone, and other natural
antioxidants have properties to prevent and treat various
diseases (Masya et al. 2023; Handayani et al. 2022; Sire-
gar et al. 2022).

The use of C. longa as a cooking spice has long
been carried out by various community in Indonesia.
In addition to its culinary application, the rhizome of
this species demonstrates therapeutic potential as an
alternative treatment, a finding corroborated by existing
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FIGURE 1 (a) Network visualization of Omics Research in Indonesia.
(b) Network visualization of Omics Research in Indonesia based on
Google Scholar data in 2019-2022.



Sudarmonowati et al.

Indonesian Journal of Biotechnology 30(2), 2025, 130-150

300

200

150 r

Production (hundred ton)

50

W 2022 m2023

Java
Cardamom
(Kapulaga)

Tumeric Galanga

(Laos)

Ginger

East Indian Lime (Jeruk Lemongrass Chinese keys
Galangal
(Kencur)

King of Black
Bitter Tumeric
(Sambiloto) (Temu ireng)

(Serai) (Temu

kunci)

nipis)

FIGURE 2 Production of the main Indonesian biopharmaceutical plants in 2022 and 2023 (hundred ton) (Badan Pusat Statistik (BPS) 2024)

studies (Fuloria et al. 2022; Pujimulyani et al. 2025). The
active substances in essential oils in turmeric encompasses
(+)-camphor, (-)transcaryophyllene, 1,8-cineole, citral,
citronellal, citronellol, eugenol, geraniol, a-humulene, D-
limonene, (+)- linalool, methyl chavicol, (-)-a - terpi-
neol, terpinen-4-ol, methyl cinnamate, and methyl eugenol
(Phanthong et al. 2013). Pujimulyani et al. (2025) have
reported that Indonesian turmeric varieties contain more
antioxidant and phenolic compound compared to the ones
in Philipines.

The demand for biopharmaceutical commodity con-
tinues to increase as part of healthy lifestyle, especially
in the health beverage industry such as herbal medicine,
herbal tea, and spice-based supplements (Mao et al. 2019).
In addition, the global trend towards natural and plant-
based products encourages the use of these commodities
in various functional beverage formulations, either in
the form of extracts, powders, or concentrates (Gupta
et al. 2023). With proven health benefits and broad mar-
ket opportunities, ginger and turmeric are strategic raw
material that needs to be developed sustainably to meet
the needs of the health beverage industry.

Production of biopharmaceutical commodities in In-
donesia, as shown in Figure 1, tend to slightly decrease
whereas the domestic demand increases especially for
herbal industries (Badan Pusat Statistik (BPS) 2024). One
of the factors contributing to low production is genetic fac-
tors. There have been wide variabilities in the yield de-
pend on the genotypes and environment factors but not
so many superior varieties have been developed with high
productivity and resistance to environmental stress (Yunita
etal. 2023). Environmental factors such as land suitability,
soil conditions, water availability, and pathogen pressure
determine the yield (Liliane and Shelton Charles 2020).
Therefore, it is essential to increase productivity by pro-
ducing superior varieties through breeding and strategic
cultivation technologies.

Prior to breeding approach, comprehensive analy-
sis of metabolic components is crucial (Maulida et al.
2024). Control of raw material sources is essential to
ensure the availability of uniform plant materials on an
industrial scale, especially through the selection of super-
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ior seeds and efficient cultivation techniques (Marcelino
et al. 2023). On the industry side, there is a gap to maintain
large-scale production due to limited standardized herbal
medicinal raw material (Tambare et al. 2021). This en-
courages development of a more controlled raw material
at genomic, proteomic and metabolic level, as well as
technology-based herbal medicinal raw material product-
ion system to ensure the quality and availability of raw
materials in a sustainable manner. If this sustainable sys-
tem has been developed, expansion to utilization of other
nutraceutical plants is possible (Table 1).

3.2. Staple food biodiversity

There are numerous species that support human diet
globally. These varieties are precious resource to under-
pin food security and nutrition security. In agriculture, the
term agricultural biodiversity is identified as the variety of
domesticated plants, livestock and microbes used for food
and farming (Jago et al. 2024).

In Indonesia, the main food crops that are widely
planted are rice followed by corn and other vegetables
(Figure 3). In this agricultural country, rice types
are divided into 4 groups based on its morphological
characteristics, namely indica (cere), japonica (gundil),
javanica (bulu), and hybrid types (Silitonga et al. 2003).
Isozyme analysis shows that the diversity of indica type
rice characters is greater than japonica; from the kinship
relationships, it is reported that indica and japonica rice
derive from the same wild rice species, but environmental
selection and genetic changes induce differences in their
appearance (Ganjari 2020). New varieties released after
2004 have been equipped with Glycemic Index (GI) data
and cultivation recommendation so the farmers will active-
ly identify varieties that are suitable for the environmental
conditions of their area (Suprihatno et al. 2009).

Beside commodities presented in Figure 3, Indone-
sia is also wealthy in plant genetic resources for food
and agriculture (PGRFAs) (Borelli et al.). The PGRFAs
are source of invaluable germplasm for the development
of local food resources and for the development of sci-
ence. Potential germplasm for supporting food security are
tuberous plants. Tubers such as konjac (Amorphophalus
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TABLE 1 Potential nutraceutical plants in Indonesia.

Varieties Plant parts Function Pharmaceutical form Potentla! Area Reference
Metabolite
Musa paradisiaca reducing sugar oral administration, with Flavonoid, Wenas et al
p Corm 8 sug potential dose 200 mg/g Saponin, Tanin, Jakarta ’
var. Kepok blood rate . . (2020)
(w/w) Triterpenoid
Musa paradisiaca . antifungal: . . Ariani and Riski
var. Kepok Fruit peel Candida albicans Ethanol extract of fruit peels South Kalimantan (2018)
Antianxiety, skin Alkaloid, Saponin,
Pegagan (Centella cells . Flavonoid, .
asiatica (L) Urban.) Leaf regeneration, Secondary metabolites Steroid. DI Yogyakarta Sutardi (2017)
skin care Triterpenoid
- Antioxidative . . .
Belimbing v'v'uluh Leaf and anti- Ethanol extract of leaf Tanln: Saponin, West Java Hasim et al.
(Averrhoa bilimbi) . Steroid (2019)
inflammatory
Terpenoid,
Mengkudu (Morinda . Reducing blood  Oral administration, Ascorbic acid, . Febriansa et al.
e Fruit L R Southeast Asia
citrifolia) pressure simplicial powder Scolopetin, (2024)
Xeronine
- . . Pratiwi and
Sirih h'.Jau (Piper Leaf Anti-bacterial Pure extract Phenolic Indonesia Muderawan
betle Linn.) compound
(2016)
. . L. . Phenolic, . Sianipar et al.
Papaya leaves Antibacterial Oral administration fAavonoid Indonesia (2023)
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30 | 5
— 25
=
5
=20 |
% 15 | m2022 2023
=1
3
i ‘|O -
5 -
0 1 L . L . | L - 1 - i - .1 | )
Rice Corn Shallots  Big Chili Curly Chili Cayenne Potato Cabbage 'omato Carrot
Pepper

FIGURE 3 Production of the main Indonesian staple plants in 2022 and 2023 (million ton) (Badan Pusat Statistik (BPS) 2024)

konjac), taro (Colocasia spp.), and yam (Dioscorea spp.)
have been consumed in emergency situation as safeguard
of food security which are culturally inherited (Indriyatno
et al. 2024; Sari and Prasetyo 2022). These plants have
advantage of being able to grow in various different envi-
ronmental conditions and can be developed in agroforestry
systems. Dioscorea genus that can be found in Indonesia
are for example D. bulbifera, D. alata, D esculenta var.
spinosa, D. esculenta var. apiculate, and D. pentaphyla
with carbohydrate contents range from 66—77%, protein
content (3—11%), fat content around 5% and low percent-
age of fiber (Indriyatno et al. 2024).

133

4. Challenge and threat to preserve nu-
traceutical species

Climate change and irresponsible human activities may
destroy the environment and cause degradation. Forest
degradation is a condition in which forests experience a
decline in the level of diversity of fauna and flora due to
human activities such as continuous cutting of illegal trees
and from natural weather disasters (Sembiring et al. 2023;
Vésquez-Grandon et al. 2018).

Moreover, staple food production such as rice and soy-
bean has been reported to decline drastically due to the rise
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of temperature (Ray et al. 2019) which only 1 °C rise re-
duced up to around 3% rice and soybean yield, more than
5% of wheat and maize yield (Zhao et al. 2017). Water-
logging has also impacted yield of barley and maize (Ren
et al. 2018) although the applying auxins and cytokinin
could encourage stomatal conductance and photosynthetic
capability.

Extreme climate changes have occurred every-
where which will affect plant growth, morphology and
physiology (Gray and Brady 2016). Drought reduces
grain yield via reduction in antioxidant potential, photo-
synthetic rate, and carbohydrate-metabolic enzymes
(Ulfat et al. 2021). This ratio change is an effect of
transpiration rate, decrease of the Rubisco enzyme
activity in carbon assimilation and the shift of shoots to
root accumulation. However, in maize, high CO, and
temperature do not increase seed yield. The effect of
climate change on plants is worse if multiple stress factors
exist.

The predicted increase in global temperature ranges
from 1.0 to 3.7 °C which affects the rise in CO, and
other greenhouse effects (Gray et al. 2016), which will be
worse with the enhanced frequency, intensity, and duratio
of heat waves. Climate change has increased the fre-
quency and intensity of extreme weather events, changing
rain patterns, and also temperatures and sea levels (Bolan
et al. 2024). Rainfall volume and pattern changes occurred
in many parts of Indonesia for decades (Sudarman et al.
2024). On one hand, there has been an increase of ex-
treme rainfall in coastal area; on the other hand, there has
been decrease of annual rainfall in 26 rain stations in East
Java (Boer and Buono 2008). Rainfall patterns also reduce
water availability in reservoirs functioning as irrigation
sources. The Citarum watershed fluctuated depended on
the annual average values of rainfall that occur in the west-
ern and eastern side areas, with a value of 4,000 mm/year,
and the minimum value of 1,200 mm occurred in 2018—
2019. Analysis using machine learning methods indicates
a decreasing trend in water level estimates for all stations,
as well as estimates of groundwater recharging (Susandi
et al. 2024). It also happened in Kedung Ombo, Gajah
Mungkur, as well as Jatiluhur reservoirs, which function
as a rice field irrigation source in the northern part of
Java. Three main issues related to global climate change,
which influence agriculture sector agriculture, are: 1) rain
patterns changes, 2) extreme climate events (floods and
droughts), and 3) enhanced air temperatures and sea levels
(Suranny et al. 2022).

Therefore, with such conditions, if farmers continue to
apply planting patterns under normal conditions, then crop
failure will occur more frequently. There has been a shift
in planting season due to the changes in rainfall amount
in certain areas in Indonesia which affected main crops
especially rice, is sensitive to stresses such as drought or
submersion. Besides that, agriculture systems such as soil
type, plant varieties, planting system, and land and water
management play a role in the plant’s yield (Kopittke et al.
2019).
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Plant responses to various environmental pressures are
highly variable. Advances in genetics such as genomics,
transcriptomics, proteomics are not easy to dissect the de-
fence system or increase plant resistance (Liu et al. 2014).
This development makes it easier to study stress signalling
pathways, such as signalling pathways (signal percep-
tion, signal transduction, gene expression against stress,
physiological processes and metabolic reactions). Recent
studies show that plants can respond to multiple stressors
rather than to a single stressor by expressing specific genes
under certain stress conditions. However, plants, with
their ability, can adapt to face the environment and manage
environmental stresses with the following mechanisms.

First, plants receive extracellular stimulation through
sensors/receptors in their cell walls or membranes. Next,
the signal turns into an intracellular signal through inosi-
tol phosphate, sugar, reactive oxygen species (ROS), cal-
cium ions (Ca?"), cyclic nucleotides (cAMP and cGMP),
and nitric oxide (NO). Furthermore, these components will
give rise to signal transduction (Newton et al. 2016). The
following processes are protein phosphorylation and de-
phosphorylation, which is carried out with the help of pro-
tein kinases and phosphatases, in most signalling path-
ways, and this is quite effective in conveying the signall-
ing mechanism. Protein kinase or phosphatase will ac-
tivate the transcription factor at the end of the phospho-
rylation chain and then bind the transcription factor pre-
cisely to the cis- element in the promoter region associated
with gene repression and modulate the transcription pro-
cess (Baoxiang et al. 2023). At the same time, upstream
components regulate transcription factors at the transcript
level and change at the posttranscriptional level, such as
ubiquitination and silencing. After post-transcription, it
will influence gene responses in regulating physiological
activities and metabolic reactions (Simeunovic et al. 2016;
Zhu 2016).

5. Integrated omics: Progress in Indonesia

Recently, an integrated approach that leverages omics has
opened a new frontier in breeding plant traits precisely,
using functional markers which often have a genetic link
with phenotypic traits. The term of integrated omics
refers to the comprehensive and combined analysis of the
various “omes” such as genome, transcriptome, proteome,
metabolome within a biological system. In the context
of plant production and health-related nutrition, integrated
omics can play a pivotal role in enhancing crop yield, im-
proving resistance to diseases, and increasing the nutri-
tional quality of plants. Using cutting-edge bioinformat-
ics tools and machine learning techniques to integrate and
analyze multi-omics data enable significant regulatory net-
works and pathways underpinning plant traits.

Indonesia, as one of the world’s most biodiverse
countries, holds immense potential for -omics ap-
plications (genomics, transcriptomics, proteomics,
metabolomics, and microbiomics) in agriculture, health,
and conservation. Recent bibliometric and empirical
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TABLE 2 Genomics based research evident in Indonesia from 2020-2025.

Approach Focus of works

Reference

Genome mining analysis and mass spectrometry
(MS)

Pangenome assembly pipeline

lllumina NextSeq 500

lllumina/PacBio sequencing and de novo
assembly

Illumina/ MinlON sequencing and de novo
assembly

MinlON Oxford Nanopore Technologies
genome

Comparative genomics analysis of chloroplast
genome annotation

Indonesian Microbial Biodiversity
Pangenome study across genus boundaries and identifies
genes that differentiate between Musaceae species,

Chloroplast genome of Myristica teysmannii (Myristicaceae), an
endemic and endangered species from Indonesia

Whole-genome sequencing of Ganoderma boninense, the
causal agent of basal stem rot disease in oil palm.

Genetic diversity, contributes to conservation and breeding of
red meranti (Rubroshorea johorensis)

Cinnamomum burmanni (Nees & T.Nees) Blume (Lauraceae)

Genomes across seven Salacca species

Handayani et al. (2021)

Rijzaani et al. (2021)

Ariati et al. (2023)

Utomo et al. (2024)

Nugroho et al. (2025a)

Salindeho et al. (2024)

Arshad et al. (2024)

Identify genome-wide DNA polymorphisms in Lim 1 and 2 of

Whole genome sequencing

Coffea liberica in order to gain insights into its capacity for

Melia et al. (2025)

adaptation in peatlands

studies, as mentioned above, reveal a growing trend
in the use of these tools, although significant gaps and
opportunities remain. Continued efforts in research, in-
frastructure development, and international collaboration
will be essential to fully harness the potential of -omics
in understanding and preserving Indonesia’s unique
genetic heritage. Herewith, a breakdown of each omics
implementation, significant gaps, and opportunities in
Indonesia.

5.1. Genomic

Genomic approaches are typically used to pinpoint pre-
cise genetic markers associated with the targeted traits.
However, due to their complicated variations in struc-
ture and transposable elements, predicted genes hardly re-
flect the corresponding proteins that express the desired
traits/characteristics (Ling et al. 2021). In plants, genomic
technology enables to identify genes associated with desir-
able traits such as high yield, disease resistance, and im-
proved nutritional content.

Marker-assisted selection combines with genomic se-
lection can then be used to breed plants with these traits.
Key applications in increasing plant production include
genome-wide association studies (GWAS): This crucial
tool is used to identify genetic variants linked to high-yield
traits, and its application in understanding germplasm di-
versity is a significant step forward in utilizing genetic
resources for crop improvement (Alemu et al. 2024).
Marker-assisted selection (MAS): Using genetic mark-
ers to select plants with desired traits more efficiently;
CRISPR/Cas9 and Other: Genome editing tools: Precisely
editing genes to improve yield and resilience. GWAS tech-
nology may be conducted in hundreds of the accession of
germplasm without segregation’s population. The syner-
getic relationship between GWAS and genome editing is
a testament to the power of these technologies in advanc-
ing plant breeding. While GWAS is a major tool to iden-
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tify genes underlying complex traits, providing targets for
genome editing to generate engineered alleles, improved
genome editing enables the validation of gene function un-
der different genetic backgrounds, which can inform the
method research of GWAS (Tibbs Cortes et al. 2021).

Between 2000 and 2024, there has been a notable in-
crease in DNA barcoding research aimed at identifying
Indonesia’s vast biodiversity. Genomic research has ex-
tended to native species, plant-associated microbiomes,
and plant pathogens, which focused on genetic diversity,
molecular marker development, and genome sequenc-
ing. These studies are crucial for conservation efforts and
breeding programs, emphasizing the importance of under-
standing local genetic variations (Table 2). While progress
is evident, comprehensive genomic data across species re-
main limited.

5.2. Transcriptomic

Transcriptomics studies on different types of plants can
assist researchers in elucidating gene function and regu-
latory processes for breeding selection, such as for yield
improvement or increasing nutrition value, which bene-
fits human health. Compared to genomic research, tran-
scriptomic study provides more in-depth understanding of
gene regulation transcripts and expression at the core of
the problem. Transcriptome can be used to assess over-
all transcriptional activity. In addition, the transcriptome
changes over time and space because it includes infor-
mation on secondary metabolic pathways and variations
in gene expression at different times and spatial regions.
Even in the same species or cultivar, plants grow variously
depending on the conditions and periods. These transcript
differences are important for plant functional genome min-
ing studies, gene regulatory domain development, genetic
diversity (dominant and recessive genes), and bioactive
compounds. Transcriptome is the total number of RNA
molecules transcribed from a particular tissue or cell at a
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given functional or developmental stage, including mRNA
(messenger RNA) and nc-RNA (non-coding RNA). This
approach enhances research for understanding the func-
tions of cells, tissues, and organisms. (Wang 2021; Tyagi
et al. 2021).

Transcriptomic analysis has been used for elucidat-
ing genes in biosynthesis and metabolism pathways and
regulation for various plants, such as food, horticulture,
industrial and medicinal crops in multiple purposes such
as nutrient uptake, organs development, stress responses
to different environments (Ren et al. 2024; Wang et al.
2023b; Dai et al. 2023; Nguyen et al. 2021). Tran-
scriptomic analyses and physiological experiments on rice
(Oryza sativa) revealed that deficient in N and P inhibit
rice growth and utilization of other nutrients. Garp-type
Transcriptional Repressor 1 (NIGT1) gene, as a transcript-
ion factor for nitrate-inducible, was reported encoded pro-
tein is a positive regulator of P homeostasis and a nega-
tive regulator of N acquisition in rice. A transcriptomic
study in Brassicaceae species revealed a conserved shade
avoidance syndrome (SAS) mechanism exhibits distinct
responses to shade, which provides comprehensive in-
formation to develop new shade-tolerant cultivars that are
suitable for high-density indoor farms (Nguyen et al. 2021;
Tyagi et al. 2021). Initiation of seed development, matu-
ration, and accumulation of storage products in vegetable
and grain pea (Pisum sativum) triggered by complex reg-
ulatory network (Zorin et al. 2023; Verma et al. 2016).
Besides important traits for increasing productivity for
food crops, transcriptomic has also been used for plant-
producing bioactive compounds beneficial for health, such
as Astragalus membranaceus. Understanding the biosyn-
thesis pathway of bioactive compound, phenylpropanoid,
the main bioactive substance of A. membranaceus, has
also been revealed from A. membranaceus (Wang et al.
2023b; Kang et al. 2024).

Bibliometric analyses reveal that Indonesia is making

notable strides in transcriptome research, especially in the
areas of plant variety, agriculture, and microbiomes un-
der extreme environment (Table 3). In Indonesia meta-
transcriptomics is beginning to be used for understand-
ing microbial functions, gene expression with environ-
mental adaptation and plant-microbe interactions, to dis-
cover bioactive compounds with potential health benefits,
though mostly studies focus on a few major crops, at a pilot
scale, while Indonesia’s vast plant biodiversity is under-
explored. Though there is need for improvement in a
number of areas, the incorporation of transcriptomic. The
know-how of pathways, cycles, and regulation of gene/s
interest will significantly impact plant improvement and
management. The genome-wide comparison of gene ex-
pression patterns can uncover novel biological relation-
ships. When gene expression profiles of two independent
experiments are highly correlated, it can be concluded that
the treatments, genotypes, organs, or other experimental
variables were correlated.

5.3. Proteomic

Proteomic approaches are conducted to gain a comprehen-
sive understanding of functional insights into how this ge-
netic product (composition, structure, functional, and ex-
pression) influences the molecular mechanism at the post-
transcriptional stage associated with the phenotypic trait
(Chawade et al. 2016). In plants, stress-associated proteins
play a crucial role in enhancing tolerance against abiotic
stresses and defence against pathogens (Shukla et al. 2021;
Liu et al. 2019), as well as plant development, have been
identified with the help of the proteomic technique (Fig-
ure 3). Wheat, maize, soybean, tomato and rice have been
the most extensively exploited crop plants for proteomic
analysis to identify protein associated with yield and envi-
ronmental resilience traits (Zenda et al. 2021; Khan et al.
2021; Pratap et al. 2024). As it has been many years
Indonesia’s scientists have been working on banana in-

TABLE 3 Transcriptomics recent research evident in Indonesia from 2020-2025.

Approach Focus of works

Reference

Transcriptomic of banana response against pathogen, reveal
pathogenesis-related genes and gene functions in the plant

RNA-seq and BGISEQ- 500 platform

system, and research development to design blood

Prakoso et al. (2020)

disease-resistance Ralstonia syzigii subsp. celebesensis and

Ralstonia solanacearum

De novo transcriptome assembly data for sengon (Falcataria

RNA-seq and de novo transcriptome
analysis

(Xystrocera festiva Pasc
RNA-seq lllumina HiSeq 2000

RNA-seq and gene regulatory network

(GRN) analysis for DEGs waterlogging condition
aRr’:‘a’?y;ssi‘:q lllumina HiSeq™ 2000, DEGs Delay the ripening process in banana

RNA Sequencing (RNA-seq) and de novo
transcriptome analysis

oe)

Transcriptomic dataset for early inflorescence stages of oil
palm in response to defoliation stress

Transcriptomic changes over time in adult oil palms under

De novo assembly, gene annotation, and molecular marker
development of in nutmeg (Myristica fragrans Houtt.)

moluccana) trees to study differences in gene expressions
between resistant and susceptible accessions, and to
identify candidate genes involved in boktor stem borers

Siregar et al. (2021)

Apriyanto and Ajambang (2022)
Lim et al. (2023)
Dwivany et al. (2024)

Rostiana et al. (2025)
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TABLE 4 Identified protein using proteomics in banana.

Technique Number of proteins identified

Protentional for translational research

Reference

nanoLC-MS/MS
(quantitation:iTRAQ)

3477 proteins from plantains
seedlings

26 proteins from mature green

LC-MS/M3 banana fruit

CPPL+ nanoLC-MS/MS 1131 protein from banana fruit

1363 proteins from plantain

809 proteins promising for antioxidation to
develop cold-tolerant banana variety

Some proteins related with chitinases, involved
in metabolism of carbohydrates and ethylene

Some proteins are involved in fruit ripening and
to identify allergen

59 peptides specific to B alleles, and 47
peptides as A alleles specific

Yang et al. (2012)
Toledo et al. (2012)
Vanderschuren et al. (2013)

Campos et al. (2018)

proteins involved in several roles include the

LC-MS/MS .
fruit
1344 proteins from cavendish
fruit

LC-MS/MS 1201 proteins from cavendish

and plantain fruits
walls,

25 proteins from somatic
embryo of banana cv. Grand
nine

PMF and MS/MS

Identified proteins were expressed during the
somatic embryo development

oxidation-reduction of polyphenols, the
synthesis and degradation of starch, and the
metabolism of sugar, the breakdown of cell

Bhuiyan et al. (2020)

Kumaravel et al. (2020)

TABLE 5 Proteomics research in Indonesia (2020-2025).

Technique Focus of works

Reference

Nano LC-MS/MS (quantitation:iTRAQ)
Chromatography-Mass Spectrometry

fraction from Ananas comosus (L.) Merr. Stem

(LC-MS/MS) the tungro virus in rice
LC/MS-MS

LC-HRMS adulteration meat
LC-MS/MS

Peptide fractionation and LC-MS/MS

The anthocyanin composition in Java black rice

Identification of Nephotettix virescens vector protein transmitting

in silico proteomics and in vivo analysis of Tacorin, a bioactive protein
Differentiate authentic Pangasius hypopthalmus meat from pork
Identifying spermatozoa proteins in Indonesian native Madura bulls

Examine the seminal plasma and sperm proteins of Toraya buffalo to
uncover those critical for reproductive functions.

Sari et al. (2021)

Senoaji et al. (2021)
Rahayu et al. (2024)

Windarsih et al. (2022)
Rosyada et al. (2023)

Maulana et al. (2025)

cluding the wild species and strengthening the research
through a research scheme entitled “Collection, Character-
ization and Pre-breeding of Indonesian Wild Bananas”
which combining conventional breeding and genome edit-
ing as well as applying other omics technology. Although
research on plant proteomics in Indonesia is not as exten-
sive as on animals, it will be intensified to keep the pace
faster to join the international scientists whose results are
listed in Tables 4 and 5.

With the use of next-generation sequencing (NGS),
mass spectrometry (MS), and an array of protein libraries
in the UniProt database, the proteomic approach is one of
the prominent methods to investigate the protein landscape
in biological and biochemical systems, offering insight
into cellular functions and expressions in plant growth
and development, metabolic processes, plant genetic vari-
ations, and plant defence mechanism, which are plausible
tools to develop innovative strategies to improve crop pro-
ductivity, quality and resilience (Table 4) (Molendijk and
Parker 2021; Li and Keller 2023).

Proteomics research in Indonesia, particularly con-
cerning more in animal rather than in plant diversity, plant
production and plant health-related nutrition (Table 5).
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While there is a growing interest in omics technologies,
proteomics has not yet been widely adopted or extensively
studied within the Indonesian scientific community.

5.4. Metabolomic

Metabolomics, a branch of omics, plays a crucial role in
characterizing and quantifying metabolites in cellular bio-
logical systems. Like other omics studies, metabolomics
utilizes data analysis techniques developed for transcript-
omics and proteomics. The data sets produced by
metabolomics are highly diverse and can even exceed the
number of samples. Metabolomics analysis data is instru-
mental in characterizing synthetic strains (Tanaka et al.
2023), bioactive compounds (Ruviaro et al. 2019; Santos
et al. 2019) and understanding plant-microbe interactions
(Olanrewaju et al. 2024).

Metabolomic profiling to elucidate plant metabolites
is challenging because more connections between pro-
teomes and metabolomes are needed. In metabolomics,
no technique or single equipment can be used to analyze
all metabolites in a metabolome. Instead, different tech-
nology is required to provide the most significant metabo-
lite coverage. Common approaches involve coupling a
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chromatographic separation to mass spectrometry, includ-
ing gas chromatography-mass spectrometry (GC-MS), lig-
uid chromatography-mass spectrometry/L.C-MS (Ruviaro
et al. 2019; Santos et al. 2019; Borges et al. 2019), and
capillary electrophoresis-mass spectrometry/CE-MS (Ko-
matsu et al. 2014). And another approach is nuclear mag-
netic resonance/NMR (Cuperlovic-Culf et al. 2019) and an
assortment of direct injection-mass spectrometry (DIMS)
methods.

Metabolomics is a research field integrating analytical
chemistry, statistics, and biochemistry to analyse quantita-
tive changes in metabolite levels. It allows researchers to
link genotype to phenotype by studying these metabolites
(Shen et al. 2023). Metabolomics research in Indonesia is
an emerging and growing field, with increasing activity in
various sectors, particularly in natural products, food sci-
ence, and health (Armas et al. 2024). Indonesia, with its
rich biodiversity, is leveraging metabolomics to explore
and identify bioactive compounds from its vast plant re-
sources.

Collaboration research was conducted by the National
University of Indonesia with the National Research and
Innovation Agency (BRIN) and Rutgers — the State Uni-
versity of New Jersey of the United States for Pioneer-
ing Metabolomic Libraries from Indonesian plants. The
creation of the first metabolomic library of Indonesian
plant species, the Indonesia Metabolome and Genome In-
novation and Conservation (MAGIC) Library, is a signifi-
cant step, aiming to foster collaborative research into plant
metabolomics and natural products. This initiative utilizes
technologies like Rapid Metabolome Extraction and Stor-
age (RAMES) for ethical and efficient sample collection
(Armas et al. 2024).

Metabolomics is still developing and being explored
for its potential to understand the nutritional content,
bioactive compounds, safety, and quality of traditional and
local food sources, and various spices. This is crucial
for food diversification efforts. There were some publica-
tions about applying metabolomics analysis on Indonesian
Plants (Table 6).

Some challenges in facilitating research about
metabolomics are infrastructure and instrumentation,
data analysis and bioinformatics, standardization, skilled
personnel, and funding (Hao et al. 2025; Peters et al. 2018;
Johnson and Gonzalez 2012). Collecting metabolomics
data requires access to advanced metabolomics instru-
mentation, such as high-resolution mass spectrometry,
nuclear magnetic resonance, etc. The complexity of
metabolomics data requires specialized bioinformatics
expertise and robust data processing platforms (Chen et al.
2022). So, there is a need for more trained researchers
and technical staff in metabolomics, requiring continued
educational and training initiatives. While some national
and international funding exists, securing consistent and
substantial funding for large-scale metabolomics projects
can be a limitation.

On the contrary, there are many opportunities to de-
velop metabolomics analysis in Indonesia because In-
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donesia has unique and extensive biodiversity presents an
unparalleled opportunity for novel discoveries in natural
products, drug development, and functional foods (Ar-
mas et al. 2024). Research on metabolomic of Indone-
sian chilli pepper have commenced in 2010 which was
combined with molecular markers measuring the compo-
sition of both semi-polar and volatile metabolites in fruit
pericarp, using untargeted LC—MS and headspace GC-MS
platforms while the ongoing research has been using dif-
ferent varieties and different approaches of metabolomic
integrated with transcriptomic to investigate the expres-
sion of gene regulating the polyphenol compounds in un-
ripe and ripe fruits. Integrating metabolomics with tra-
ditional Indonesian knowledge of plants and health of-
fers a powerful approach for scientific validation and in-
novation. Metabolomics can significantly contribute to
addressing food security challenges and improving pub-
lic health through personalized nutrition and disease pre-
vention strategies (Johnson and Gonzalez 2012). The
increasing availability of more affordable and efficient
metabolomics technologies can facilitate wider adoption
and research. Building stronger national and international
collaborative networks can accelerate research progress
and knowledge exchange.

5.5. Paving desired increased plant production through
genome editing

Plant whole-genome sequencing studies have enabled the
discovery of several genes and regulatory elements that
govern various characteristics (Vekemans et al. 2021).
By combining inexpensive sequencing technologies with
computational bioinformatics tools and high throughput
phenotyping methods, we can improve the detection of
genes that control significant agronomic variables related
to food production and quality (Steinwand and Ronald
2020). Multi-omics investigations yield a comprehen-
sive understanding of organisms’ diverse genetic, protein,
metabolite, and ion profiles. Hence, the integration of
multi-omics technologies presents a significant chance to
expedite the process of identifying genes that regulate agri-
culturally significant characteristics in plants, including
conventional food crops. This integration can also hasten
improvement programs by employing traditional breed-
ing methods and cutting-edge gene editing technologies.
Genome editing, as a cutting-edge technology, is a break-
through that will help meet the growing need for food
while facing limited resources. Due to inter-specific hy-
bridization hurdles, conventional breeding faces a signifi-
cant problem in developing desired cultivars. The primary
challenges in traditional crossing in the banana genus in-
clude polyploidy, a lengthy production cycle, the steril-
ity of most cultivars, and the limited genetic variety in
this genus germplasm (Ortiz and Swennen 2014). This
approach is enabling the introduction or modification of
specific and relevant features in a single step. In addi-
tion, these molecular tools, such as CRISPR-Cas9, TAL-
ENs, and ZFNs, function as molecular scissors, enabling
precise modification of specific DNA sequences with un-
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TABLE 6 The research on metabolomics approaches in Indonesia.

Function

Approach

Reference

Metabolite profiling of Indonesian coffees based on
their regional origin.

identifying and quantifying metabolic changes
associated with Ganoderma resistance in oil palm roots

Understanding metabolite changes during soybean
fermentation to improve the quality and nutritional
value of tempe

Characterize the metabolic profiles of leaves from
cloves (Syzygium spp.) varieties

Metabolomic profile of Indonesia Betel Quids.

Identify antihyperglycemic and antioxidant compounds
from Melastoma malabathricum L. leaf

nuclear magnetic resonance (NMR)

nuclear magnetic resonance (NMR)

gas chromatography-mass spectrometry (GC-MS)

gas chromatography-mass spectrometry (GC-MS)
gas chromatography-mass spectrometry (GC-MS)

liquid chromatography-mass spectrometry (LC-MS)

Happyana et al. (2020)

Nugroho et al. (2025b)

Prativi et al. (2023)

Kusuma et al. (2024)
Zhang et al. (2022)

Lestari et al. (2024)

precedented accuracy. This method allows for scientists
to create or enhance advantageous characteristics in crops,
such as disease resistance, improved nutrition, and drought
tolerance.

In horticulture crop research, TALENs, ZFNs, and
CRISPR-Cas9 have been utilised as genome editing tech-
niques. They offer researchers the ability to precisely
modify genes associated with desired traits in horticultural
crops, facilitating the development of improved varieties.
TALENSs and ZFNs employ modified DNA-binding pro-
teins that can be tailored to target particular genomic se-
quences selectively (Gaj et al. 2013). Like CRISPR-Cas9,
these technologies cause specific DNA cutting and subse-
quent alterations at the intended locations in the genome.
TALENS utilise DNA-binding domains that originate from
transcription activator-like effectors (TALEs), proteins
usually found in bacteria that cause plant diseases (Sun
and Zhao 2013). Engineered TALE domains selectively
attach to particular DNA sequences and are combined with
a nuclease domain to induce DNA cleavage (Joung and
Sander 2013). On the other hand, ZFNs are a type of hy-
brid protein that merge designed zinc finger DNA-binding
domains with the FokI nuclease domain obtained from the
FokI restriction enzyme (Li et al. 2011). Zinc finger do-
mains are specifically engineered to identify specific DNA
sequences, while the Fokl domain precisely cuts the DNA
at the intended location (Pattanayak et al. 2014).

The Clustered Regularly Interspaced Short Palin-
dromic Repeats (CRISPR) and the accompanying
CRISPR-associated (Cas) proteins have become well-
known for their user-friendly characteristics, high
effectiveness, and versatility in modifying genetic mate-
rial in various organisms, including horticulture crops.
This potent tool allows for accurate modification of
plant genomes by leveraging the defence mechanism of
bacteria against viral infections (Rao et al. 2022), enables
researchers to focus on particular genes linked to desirable
features and introduce alterations to improve agricultural
characteristics (Rasheed et al. 2022). This high level of
accuracy enables the implementation of beneficial muta-
tions, gene interruption, and the replacement of precise
DNA sequences, resulting in targeted modifications in
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characteristics such as resistance to diseases, ability to
withstand environmental stress, nutritional content, and
crop productivity.

The CRISPR-Cas9 system consists of two essential
components: the Cas9 nuclease and the guide RNA
(gRNA). Type II CRISPR systems utilize the RNA-guided
endonuclease Cas9 to recognize/identify and cut double-
stranded DNA (dsDNA) targets using conserved RuvC
and HNH nuclease domains. The cleavage induced by
Cas9 is strictly dependent on a protospacer adjacent motif
(PAM) in the target DNA (Karvelis et al. 2017).

The SpyCas9 effector protein, derived from Strepto-
coccus pyogenes, is a single polypeptide chain consisting
of 1,368 amino acids. When bound to dual-component
guide RNAs composed of CRISPR RNA (crRNA) and
trans-acting CRISPR RNA (tracrRNA), the Cas effector
protein transforms into a fully operational nuclease. The
two RNA components can be physically combined to cre-
ate a unified guide RNA (sgRNA) (Park and Choe 2019).
Cas9 is a nuclease that can cause blunt double-strand
breaks (DSBs) at almost any target DNA locus with a 5'-
NGG-3' protospacer-adjacent motif (PAM) at the 3’ end.
Then, DSBs facilitate the generation of specific point mu-
tations, insertions, deletions, or substitutions within the
target DNA locus, via homologous recombination (HR)
or nonhomologous end joining (NHEJ). These mutations
may result in loss of function for the gene of interest. Since
the HR pathway uses a homologous sequence as a template
to repair the DSBs, this pathway can be utilized to pre-
cisely integrate of the desired genes into the genome (Park
and Choe 2019). The CRISPR/Cas9 technique application
on various crops, along with the specific genes targeted
and the resulting modified genetic traits, is presented in
Table 7. Some of those were conducted in Indonesia to
improve crops such as rice (Santoso et al. 2020), chilli
pepper (Kurniawati et al. 2020), oil palm (Budiani et al.
2019), and on medicinal plants such as Artemisia annua
(Koerniati and Simanjuntak 2020). On going gene editing
research on cassava conducted at BRIN which commenced
in 2022 is to address drought tolerance as well as increase
nutrition content especially iron. The results will be pub-
lished in 2025-2026.
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TABLE 7 Crops subjected to genome editing techniques, modified genetic traits in various plant species in Indonesia.

Crops Modified Gene(s) Trait/Function Reference
Artemisia annua SQS Sterol biosynthesis Koerniati and Simanjuntak (2020)
Chilli pepper PCNA Resistant to geminivirus Kurniawati et al. (2020)
Rice 0OsGA200x-2 Semi-dwarf Santoso et al. (2020)
QOil Palm ESEMLP Resistant to Ganoderma Budiani et al. (2019)

E8, phytoene N .
Tomato desaturase (PDS), E:dhjcnecdedIfar:tlthrellyiaehrllng, delayed fruit senescence, Wai et al. (2020)

SIDELLA P &
Potato StCDF1 Increased tuberization and yield Gonzales et al. (2021)
Wheat TaGW2, Puroindoline Enh:?nced thousand grain weight, improved grain Henry et al, (2018)

genes quality
Citrus CsPDS Improve.d disease resistance, reduced ethylene Yang et al. (2023)

production

Strawberry FaTMé6 Petal and stamen development Martin-Pizarro et al. (2019)
Grape VWWRKY52, VWWRKY2 Enhanced disease resistance, improved abiotic stress Capriotti et al. (2020)

Brassica oleracea XccR5-89.2

Mushroom (Agaricus Polyphenol oxidase

tolerance

Improved resistance to blackleg disease

Reduced browning and improved shelf life

bisporus) (PPO) genes

Banana MaACO1 Promotes the shelf life of banana
Carrot DcCCD4 Different colored taproots in carrots
Strawberry FaGAST1 Increased fruit size

Cucumis melo CmACO1 Extends the shelf-life

Capsicum annuum CaERF28 Anthracnose resistance

Rose RhEIN2 Ethylene insensitivity in rose

Melon elF4E Virus resistance and male sterility
Tomato SIMAPK3 Reduced drought tolerance

Brassica napus FAD2 Catalyzes the desaturation of oleic acid
Kiwi fruit AcBFT Reduce plant dormancy

Tomato SIMYC2 Fruit resistance to Botrytis cinerea
Soybean GmFATB1 Reduce saturated fatty acids

Kiwi fruit AcCBF3

Sweet Potato

IbGBSSI and IbSBEII

Phytoene desaturase

Dwarf plants and enhanced freezing tolerance

Improvement of starch quality

Afrin et al. (2019)
Waltz (2016)

Hu et al. (2021)

Li et al. (2021)
Abdullah et al. (2021)
Nonaka et al. (2023)
Mishra et al. (2021)
Wang et al. (2023a)
Pechar et al. (2022)
Wang et al. (2017)
Okuzaki et al. (2018)
Herath et al. (2022)
Shu et al. (2021)

Ma et al. (2021)
Wang (2021)

Wang et al. (2019)

Brewer and Chambers (2022)

Papaya (CpPDS) Inducing a visually scorable albino phenotype
SmelPPO4, SmelPPOS5, . .

Eggplant and SmelPPO6 Reduces fruit flesh browning

Cassava elF4E

Reduces cassava brown streak disease symptom

Maioli et al. (2020)

Gomez et al. (2019)

On going gene editing research to improve banana re-
sistance to banana bunchy top virus (BBTV) and Fusar-
ium TR (Tropical Race)-4, nutrition content and tolerance
to drought are conducted by BRIN researchers with their
partners both national and international institutions. The
approach being used in banana is direct gene transfer us-
ing electroporator into the protoplast or embryogenic cal-
lus although the procedure and the ratio of successful re-
generation is still further improved.

Although genetically modified organism (GMO) Ba-
nana has been produced by the Queensland University of
Technology and approved by the Government of Australia
for the production (Hathy et al. 2024), scientists are seek-
ing on non-transgene improved banana due to global com-
munity preference. Therefore, efforts to produce those
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gene edited banana are enhanced to anticipate future dev-
astation attacking commercial banana as had been faced
in the past causing enormous damage to the production of
Gros Michel due to Fusarium disease (Altendorf 2019).
As a consequence, in mid-1950s, the first strain (Race
1) of Fusarium wilt outbreak which was facilitated by
the monoculture and intensive plantation cultivation tech-
niques and concentrated transport routes of the commer-
cial banana industry, the production of Gros Michel that
the export industry was forced to switch its entire pro-
duction to the Fusarium wilt-resistant Cavendish variety.
This was unavoidable as the total losses to trade in Gros
Michel bananas at the time amounted to a current equiva-
lent of USD 2.3 billion.

The DNA-free CRISPR system does not involve in-
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TABLE 8 CRISPR/Cas9-based genome editing in various plants, target genes and delivery methods.

Plant species Target genes

Delivery method

References

Arabidopsis thaliana AtPDS3, AtFLS2, AtRACK1b

Nicotiana benthamiana NbPDS
Nbpds
NbPDS
Triticum aestivum TaMLO
Tainox, TaPDS
TaMLO-A1
Sorghum bicolor DsRED2
Citrus sinensis CsPDS

Protoplast, co-transfection and
Agrobacterium infiltration

Agrobacterium infiltration
Agrobacterium infiltration
Agrobacterium infiltration
Agrobacterium infiltration
Agrobacterium infiltration
Agrobacterium infiltration
Agrobacterium infiltration

Agrobacterium infiltration

Lietal. (2013)

Nekrasov et al. (2013)
Upadhyay et al. (2013)
Belhaj et al. (2013)
Shan et al. (2013)
Upadhyay et al. (2013)
Wang et al. (2014)
Jiang et al. (2013a)
Jiang et al. (2013b)

tegrating foreign DNA elements; therefore, it may allevi-
ate the regulatory issues associated with transgenic crops
and their easy acceptance. Moreover, the deliberate al-
teration of a gene through the utilization of CRISPR/Cas
technology, resulting in mutations, sometimes resembles
to the use of mutagenic substances that are legally ac-
ceptable. CRISPR/Cas9-based genome editing has been
successfully established in various fruit crops, which has
set an example for its applicability and usefulness (Table
8).

6. Challenges and Opportunities

The synergism of all legal framework, national and in-
ternational policies and conventions and the implementa-
tion of the regulations are challenging. In order to protect
the biodiversity from overexploitation, the Government of
Indonesia has released Government Regulations No. 6
year 2007 about Forest Management and Preparation of
Forest Management Plans, and Forest Utilization. In this
regulation, the utilization forest resources for pharmaceu-
tical purposes, viz cultivating medicinal plants could be
awarded for non-timber forest utilization. Government
Regulation No. 28 year 2011 about the Management of
Natural Reserve Areas and Nature Conservation Area ex-
presses the government commitment to provide opportu-
nity for the community to utilize forest areas for pharma-
ceutical purposes sustainably.

Government Regulation Number 8 year 1999 about
the Utilization of Plant and Animal Article 35 states that
utilization of certain types of medicinal plants collected
from natural habitat shave to sustainable considering the
population in the wild, carrying capacity, and its diver-
sity and must comply with conservation principles. De-
termination of the quota for export and import of wildlife
(biodiversity) is managed by a Secretariat of Biodiversity
Scientific Authority BRIN to maintain the balance of In-
donesian biodiversity.

The Government of Indonesia has also committed to
conservation efforts for biological resources through the
utilization of genetic resources regulated in Law No. 11
year 2013 regarding the Nagoya Protocol as well as the

141

Cartagena Protocol of the Convention on Biological Di-
versity (CBD) about access to Genetic Resources and Fair
Profit Sharing from its Use of the Convention Biodiver-
sity, and biosafety of genetically engineered organisms.

Inadequate or poorly enforced omics-based agricul-
tural products and nutrition-based plant products policies
can hinder sustainable practices and innovation. Coordi-
nation and collaboration of research on omics especially
in Indonesia will enhance better result achievements con-
sidering the existing human resources, infrastructures and
research funds. Increasing capacity building on master-
ing this technology for agriculture and health-related plant
products and its data analysis is prerequisite. Tariffs, quo-
tas, and other trade restrictions can limit market access re-
lated to omics-based products for user utilization.

Other challenges are big data management, interpreta-
tion, cost, variability of environmental factors. Integrat-
ing and interpreting vast amounts of data from different
omics platforms are complex and requires advanced bioin-
formatics tools. High-throughput omics technologies can
be expensive and may not be accessible to all research
institutions, particularly in developing countries. Plants’
responses to environmental factors are highly variable, and
omics data must be interpreted in the context of these vari-
ations.

To tackle these problems, integrated and sustain-
able approaches to obtain superior genotypes, efficient
irrigation systems, soil conservation techniques, and nutri-
ent management to maintain soil fertility and water avail-
ability, strengthening agricultural and health-related nutri-
tion producing plants policies, and promoting research and
development in sustainable agriculture are essential.

By addressing these challenges through a combination
of scientific, technological, and policy-driven approaches,
plant production can become more resilient, sustainable,
and productive, ensuring food security, nutrition-based
plant products, health and environmental health.

7. Conclusion and Way Forward

Integrated omics is a powerful approach that can revo-
lutionize some attributes such as plant production and
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health-related nutrition. To enable the development of
crops that are not only high-yielding and resilient but also
nutritionally superior, it is crucial to have a comprehensive
key traits molecular background. This holistic approach is
essential for meeting the growing global demand for food
and improving public health through better nutrition. By
integrating omics, researchers can identify key genetic and
biochemical pathways to target for enhancing yield, stress
tolerance, and nutrient use efficiency. The implementa-
tion of GWAS including the interaction of Genetic and
Environment is a great opportunity for the development
of more effective approaches for various aspects of plant
breeding.

Increasing plant production using omics technologies
which involves the integration of various high-throughput
approaches is possible as plant growth and develop-
ment are enhanced by understanding and manipulating
genetic through new technologies such as genome edit-
ing, molecular, and biochemical aspects. Enhancing and
strengthening collaborations among universities/research
institutions within Indonesia and abroad, private sectors,
other government agencies as well as society and commu-
nities are necessary. Legal framework and synergism of
national and international policy and regulations covering
trade and access and benefit sharing need to be ensured.
Future directions involve the development of more cost-
effective including simplifying procedures from extraction
stage and accessible omics technologies, improved bioin-
formatics tools for data integration, and a more focus on
translating research findings into practical applications in
the field.
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