Osteogenic induction of human Wharton’s jelly‐derived mesenchymal stem cells using a composite scaffold from poly(ɛ‐caprolactone) and biosilica sponge Xestospongia testudinaria
Andika Ardiyansyah(1), Anggraini Barlian(2*), Candrani Khoirinaya(3), Sony Heru Sumarsono(4)
(1) School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
(2) School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Scientific Imaging Centre, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
(3) School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
(4) School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
(*) Corresponding Author
Abstract
Bone defects occur when bones cannot function properly due to trauma, such as accidents. In Indonesia, such defects are mainly treated by bone grafting, but the limited availability of transplants has led to the development of bone tissue engineering as an alternative. This study uses human Wharton’s jelly‐derived mesenchymal stem cells (hWJ‐MSCs) as these can differentiate into osteoblasts when stimulated by a composite scaffold containing biosilica from the sponge Xestospongia testudinaria. Four main steps were performed in this study, i.e. scaffold fabrication with varying biosilica concentrations, material characterization to see whether the scaffold resembled bone tissue, hWJ‐MSC isolation from the umbilical cord and cultured until passage 6, and scaffold testing to assess its compatibility and ability to support cell adhesion, proliferation, differentiation, and mineralization into bone cells. The results indicated that a scaffold with 50% biosilica has good properties for supporting hWJ‐MSC growth, proliferation, and differentiation. The scaffold exhibits strong mechanical strength and hydrophilic characteristics, enhances cell proliferation, and promotes osteogenic differentiation, as confirmed by collagen type I and osteopontin expression with a higher optical density value in the Alizarin Red assay. Therefore, the 50% biosilica composite scaffold is biocompatible and osteoconductive, making it a promising candidate for bone tissue engineering.
Keywords
Full Text:
PDFReferences
Alibrahim KA. 2022. FTIR, 1H NMR, TGA, TEM and biological studies on the new synthesized nano zirconium(iv) captopril hypertension drug complex. Farmacia 70(1):133–137. doi:10.31925/farmacia.2022.1.19.
Anggani OF, Setiya Budiatin A, Sulmartiwi L, Rahmad Royan M. 2021. In Vitro Cytotoxicity Test Reveals Nontoxic of Wastebased Scaffold on Human Hepatocyte Cells. J. Aquac. Fish Heal. 10(1):109–116. doi:10.20473/jafh.v10i1.23424.
Aung SW, Abu Kasim NH, Ramasamy TS. 2019. Isolation, Expansion, and Characterization of Wharton’s JellyDerived Mesenchymal Stromal Cell: Method to Identify Functional Passages for Experiments. Methods Mol. Biol. 2045:323–335. doi:10.1007/7651_2019_242.
Barcena AJR, Mishra A, Bolinas DKM, Martin BM, Melancon MP. 2024. Integration of electrospun scaffolds and biological polymers for enhancing the delivery and efficacy of mesenchymal stem/stromal cell therapies. Front. Biosci. (Landmark Ed.) 29(6):228. doi:10.31083/j.fbl2906228.
Barros AA, Aroso IM, Silva TH, Mano JF, Duarte ARC, Reis RL. 2014. Surface modification of silicabased marine sponge bioceramics induce hydroxyapatite formation. Cryst. Growth Des. 14(9):4545–4552. doi:10.1021/cg500654u.
Beniwal G, Saxena KK. 2021. A review on pore and porosity in tissue engineering. In: Mater. Today Proc., volume 44. p. 2623–2628. doi:10.1016/j.matpr.2020.12.661.
Cannillo V, Chiellini F, Fabbri P, Sola A. 2010. Production of Bioglass® 45S5 Polycaprolactone composite scaffolds via saltleaching. Compos. Struct. 92(8):1823–1832. doi:10.1016/j.compstruct.2010.01.017.
Cao S, Zhao Y, Hu Y, Zou L, Chen J. 2020. New perspectives: Insitu tissue engineering for bone repair scaffold. Compos. Part B Eng. 202:108445. doi:10.1016/j.compositesb.2020.108445.
Caplan AI. 2007. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213(2):341–347. doi:10.1002/jcp.21200.
Chaparro O, Linero I. 2016. Regenerative Medicine: A New Paradigm in Bone Regeneration. Rijeka: IntechOpen. p. 386. doi:10.5772/62523.
de Almeida Cruz M, GabbaiArmelin PR, de França Santana A, dos Santos Prado JP, Avanzi IR, Parisi JR, Custódio MR, Granito RN, Renno ACM. 2020. In vivo biological effects of marine biosilica on a tibial bone defect in rats. Brazilian Arch. Biol. Technol. 63:e20190084. doi:10.1590/167843242020190084.
Dudik O, Amorim S, Xavier JR, Rapp HT, Silva TH, Pires RA, Reis RL. 2021. Bioactivity of Biosilica Obtained From North Atlantic DeepSea Sponges. Front. Mar. Sci. 8:637810. doi:10.3389/fmars.2021.637810.
Emadi H, Baghani M, Khodaei M, Baniassadi M, Tavangarian F. 2024. Development of 3DPrinted PCL/ Baghdadite Nanocomposite Scaffolds for Bone Tissue Engineering Applications. J. Polym. Environ. 32(8):1–19. doi:10.1007/s10924023031567.
Facchin F, Bianconi E, Romano M, Impellizzeri A, Alviano F, Maioli M, Canaider S, Ventura C. 2018. Comparison of oxidative stress effects on senescence patterning of human adult and perinatal tissuederived stem cells in short and longterm cultures. Int. J. Med. Sci. 15(13):1486. doi:10.7150/ijms.27181.
Gandhimathi C, Quek YJ, Ezhilarasu H, Ramakrishna S, Bay BH, Srinivasan DK. 2019. Osteogenic differentiation of mesenchymal stem cells with silicacoated gold nanoparticles for bone tissue engineering. Int. J. Mol. Sci. 20(20):5135. doi:10.3390/ijms20205135.
Ganesh N, Jayakumar R, Koyakutty M, Mony U, Nair SV. 2012. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering. Tissue Eng. Part A 18(18):1867–1881. doi:10.1089/ten.tea.2012.0167.
Giuliani N, Lisignoli G, Magnani M, Racano C, Bolzoni M, Dalla Palma B, Spolzino A, Manferdini C, Abati C, Toscani D, Facchini A, Aversa F. 2013. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. Stem Cells Int. p. 312501. doi:10.1155/2013/312501.
Hadi TA, Hafizt M, Hadiyanto, Budiyanto A, Siringoringo RM. 2018. Shallow water sponges along the south coast of Java, Indonesia. Biodiversitas 19(2):485– 493. doi:10.13057/biodiv/d190223.
Herth E, Zeggari R, Rauch JY, RemyMartin F, Boireau W. 2016. Investigation of amorphous SiOx layer on gold surface for Surface Plasmon Resonance measurements. Microelectron. Eng. 163:43–48. doi:10.1016/j.mee.2016.04.014.
Huang YZ, Xie HQ, Li X. 2020. Scaffolds in Bone Tissue Engineering: Research Progress and Current Applications. Elsevier. p. 204–215. doi:10.1016/b9780 128012383.11205x.
Kalkan E, Nadaroğlu H, Celebi N, Tozsin G. 2014. Removal of textile dye Reactive Black 5 from aqueous solution by adsorption on laccasemodified silica fume. Desalin. Water Treat. 52(3133):6122–6134. doi:10.1080/19443994.2013.811114.
Kangari P, TalaeiKhozani T, RazeghianJahromi I, Razmkhah M. 2020. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. doi:10.1186/s13287020020011.
Khosravi A, GhasemiMobarakeh L, Mollahosseini H, Ajalloueian F, Masoudi Rad M, Norouzi MR, Sami Jokandan M, Khoddami A, Chronakis IS. 2018. Immobilization of silk fibroin on the surface of PCL nanofibrous scaffolds for tissue engineering applications. J. Appl. Polym. Sci. 135(37):46684. doi:10.1002/app.46684.
Lin H, Wang X, Huang M, Li Z, Shen Z, Feng J, Chen H, Wu J, Gao J, Wen Z, Huang F, Jiang Z. 2020. Research hotspots and trends of bone defects based on Web of Science: A bibliometric analysis. J. Orthop. Surg. Res. 15(1):1–15. doi:10.1186/s13018020019733.
Marino L, Castaldi MA, Rosamilio R, Ragni E, Vitolo R, Fulgione C, Castaldi SG, Serio B, Bianco R, Guida M, Selleri C. 2019. Mesenchymal stem cells from the Wharton’s jelly of the human umbilical cord: Biological properties and therapeutic potential. Int. J. Stem Cells 12(2):218–226. doi:10.15283/ijsc18034.
Mattila PK, Lappalainen P. 2008. Filopodia: Molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9(6):446–454. doi:10.1038/nrm2406.
Mori G, Brunetti G, Oranger A, Carbone C, Ballini A, Muzio LL, Colucci S, Mori C, Grassi FR, Grano M. 2011. Dental pulp stem cells: Osteogenic differentiation and gene expression. Ann. N. Y. Acad. Sci. 1237(1):47–52. doi:10.1111/j.1749 6632.2011.06234.x.
Nauth A, Schemitsch E, Norris B, Nollin Z, Watson JT. 2018. CriticalSize Bone Defects: Is There a Consensus for Diagnosis and Treatment? J. Orthop. Trauma 32:S7–S11. doi:10.1097/BOT.0000000000001115.
O’Brien FJ. 2011. Biomaterials & scaffolds for tissue engineering. Mater. Today 14(3):8–95. doi:10.1016/S13697021(11)70058X.
Phillipson K, Hay JN, Jenkins MJ. 2014. Thermal analysis FTIR spectroscopy of poly(ϵ caprolactone). Thermochim. Acta 595:74–82. doi:10.1016/j.tca.2014.08.027.
Qu H, Fu H, Han Z, Sun Y. 2019. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 9(45):26252–26262. doi:10.1039/c9ra05214c.
Rieuwpassa FJ, Balansa W. 2022. First record of the rare Leucetta avocado sponge from Sangihe Islands, Indonesia. Aquat. Sci. Manag. 10(2):55–61. doi:10.35800/jasm.v10i2.48431.
Santana BP, Nedel F, Perelló Ferrúa C, e Silva RM, da Silva AF, Demarco FF, Lenin Villarreal Carreño N. 2015. Comparing different methods to fix and to dehydrate cells on alginate hydrogel scaffolds using scanning electron microscopy. Microsc. Res. Tech. 78(7):553–561. doi:10.1002/jemt.22508.
Selvaraj V, Sekaran S, Dhanasekaran A, Warrier S. 2024. Type 1 collagen: Synthesis, structure and key functions in bone mineralization. Differentiation 136:100757. doi:10.1016/j.diff.2024.100757.
ShahinShamsabadi A, Hashemi A, Tahriri M, Bastami F, Salehi M, Mashhadi Abbas F. 2018. Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity. Mater. Sci. Eng. C 90:280–288. doi:10.1016/j.msec.2018.04.080.
Shaltooki M, Dini G, Mehdikhani M. 2019. Fabrication of chitosancoated porous polycaprolactone/strontiumsubstituted bioactive glass nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng. C 105:110138. doi:10.1016/j.msec.2019.110138.
Shi H, Zhou Z, Li W, Fan Y, Li Z, Wei J. 2021. Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. doi:10.3390/cryst11020149.
Sundaramurthi D, Jaidev LR, Ramana LN, Sethuraman S, Krishnan UM. 2015. Osteogenic diferentiation of stem cells on mesoporous silica nanofibers. RSC Adv. ) 5:69205–69214. doi:10.1039/C5RA07014G.
Taufik S A, Wiweko A, Yudhanto D, Rizki M, Habib P, Dirja BT, Rosyidi RM. 2022. Treatment of bone defects with bovine hydroxyapatite xenograft and platelet rich fibrin (PRF) to accelerate bone healing. Int. J. Surg. Case Rep. 97:107370. doi:10.1016/j.ijscr.2022.107370.
Taye MB, Ningsih HS, Shih SJ. 2024. Exploring the advancements in surfacemodified bioactive glass: enhancing antibacterial activity, promoting angiogenesis, and modulating bioactivity. J. Nanoparticle Res. 26(2):28. doi:10.1007/s11051024059352.
Thiagarajan L, AbuAwwad HADM, Dixon JE. 2017. Osteogenic Programming of Human Mesenchymal Stem Cells with Highly Efficient Intracellular Delivery of RUNX2. Stem Cells Transl. Med. 6(12):2146–2159. doi:10.1002/sctm.170137.
Yu H, Xiao Q, Qi G, Chen F, Tu B, Zhang S, Li Y, Chen Y, Yu H, Duan P. 2022. A Hydrogen BondsCrosslinked Hydrogels With SelfHealing and Adhesive Properties for Hemostatic. Front. Bioeng. Biotechnol. 10:855013. doi:10.3389/fbioe.2022.855013.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





