Limited evidence for white spot syndrome virus susceptibility associated with expression of PmVRP15 in local population of giant tiger shrimp (Penaeus monodon)

Aushia Tanzih Al Haq(1*), M. Murwantoko(2), T. Trijoko(3), Nastiti Wijayanti(4), Ch. Retna Handayani(5), Rarastoeti Pratiwi(6)

(1) Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
(4) Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
(5) Main Center for Brackishwater Aquaculture and Fisheries, Jepara, Indonesia
(6) Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author


White spot syndrome virus (WSSV) is a devastating viral disease in shrimp aquaculture. Infection of
WSSV in penaeid shrimps affects immune defense and changes gene expression. PmVRP15 has been reported as a part of the WSSV propagation pathway that is highly up-regulated in hemocytes at the acute phase of WSSV infection. This study analyzed the expression of PmVRP15 in local populations of giant tiger shrimp (Penaeus monodon) to be associated with susceptibility to WSSV. Tested populations consisted of an inbreeding population (G8) and outbreeding population (G8iA) from Jepara, Indonesia. Susceptibility was determined by cumulative mortality, median lethal time (LT50), and severity of infection at time of death. Though all populations were susceptible to WSSV, the frst mortality in G8 occurred at 18 hours post-infection (hpi) with mild infection, while frst mortality of G8iA occurred at 30 hpi with severe infection. The LT50 of G8 was signifcantly lower than that of G8iA, indicating that G8iA was less susceptible to WSSV than G8. Relative PmVRP15 transcripts of G8iA were insignifcantly down-regulated, whereas relative PmVRP15 transcripts of G8were insignifcantly upregulated. Although it’s still not conclusive, the results of this study suggest that PmVRP15 has weak potentialas a WSSV susceptibility marker in G8 and G8iA broodstock selection.


Disease susceptibility; genetic marker; Penaeus monodon; PmVRP15; WSSV susceptibility

Full Text:



Alifuddin, M., Dana, D., Eidman, M., Malole, M.B. and Pasaribu F.H. 2003. Patogenesis Infeksi Virus White Spot (WSV) pada Udang Windu (Penaeus monodon Fab.) [Pathogenesis of White Spot Virus Infection (WSV) on Black Tiger Shrimp (Penaeus monodon Fab.)]. Jurnal Akuakultur Indonesia 2(2): 82-92.

Andrade, A.J. 2011. Shrimp immunological reactions against WSSV: role of haemocytes on WSSV fate. Master’s dissertation, Universiteit Gent. Brieuc, M.S.O, Purcell, M.K., Palmer, A.D. and Naish K.A. 2015. Genetic variation underlying resistance to infectious hematopoietic necrosis virus in a steelhead trout (Oncorhynchus mykiss) population. Dis Aquat Org 117: 77-83.

Cock, J., Gitterle, T., Salazar, M. and Rye, M. 2009. Breeding for disease resistance of Penaeid shrimps. Aquaculture 286: 1-11. Corteel, M., Dantas-Lima, J.J., Tuan, V.V., Thuong, K.V., Wille, M., Alday-Sanz, V., Pensaert, M.B., Sorgeloos, P. and Nauwynck H.J. 2012. Susceptibility of juvenile Macrobrachium rosenbergii to different doses of high and low virulence strains of white spot syndrome virus (WSSV). Dis Aquat Org 100: 211-218.

Dutta ,S., Chakrabarty, U., Mallik, A. and Mandal, N. 2013. Experimental evidence for white spot syndrome virus (WSSV) suceptibility linked to a mictosatellite DNA marker in giant black tiger shrimp, Penaues monodon (Fabricius) J Fish Dis 36(6): 293-597.

Escobedo-Bonilla, C.M., Audoorn, L., Wille, M., Alday-Sanz, V., Sorgeloos, P., Pensaert, M.B. and Nauwynck H.J. 2006. Standardized white spot syndrome virus (WSSV) inoculation procedures for intramuscular or oral routes. Dis Aquat Org 68: 181-188.

Ghosh, J., Lun, C.M., Majeske, A.J., Sacchi, S., Schrankel, C. and Smith L.C. 2011. Invertebrate immune diversity. Dev Comp Immunol 35: 959-974.

Glass, A., Henning, J., Karopka, T., Scheel, T., Bansemer, S., Koczan, D., Gierl, L., Rolfs, A. and Gimsa, U. 2005. Representation of Individual Gene Expression in Completely Pooled mRNA Sample. Biosci Biotechnol Biochem 69(6): 1098-1103.

Gopikrishna, G., Gopal, C., Shekhar, M., Kumar, K.V., Kannappan, S. and Ponniah, A.G. 2012. Growth performance and white spot syndrome virus resistance in families of kuruma shrimp (Marsupenaeus japonicus). Indian J of Geo Mar Sci 41(1):56-60.

Hameed, A., Sarathi, M., Sudhakaran, R., Balasubramanian, G. and Musthaq, S. 2006. Quantitavie assessment of apoptotic hemocyets in white spot syndrome virus-infected penaeid shrimp. Penaeus monodon and Penaeus indicus, by flow cytometric analysis. Aquaculture 256: 111-120.

Hayes ,B.J., Gitterle, T., Gopikrishna, G., Gopal, C., Krishna, G., Jahageerdar, S., Lozano, C., Alavandi, S., Paulpandi, S., Ravichandran, P. and Rye, M. 2010. Limited evidence for genetic variation for resistance to the white spot syndrome virus in Indian populations of Penaeus monodon. Aquacult Res 41: e872 - e877.

Jeswin, J., Anju, A., Thomas, P.C., Paulton, M. and Vijayan, K. 2013. Survivability of Penaeus monodon during white spot syndrome virus infection and its correlation with immune related genes. Aquaculture 380-383: 84-90. Johansson ,M.W., Keyser, P., Sritunyalucksana, K. and Soderhall, K. 2000. Crustacean haemocytes and haematopoiesis. Aquaculture 191(13): 45-52.

Liu, J., Yu, Y., Li, F., Zhang, X. and Xiang, J. 2014. A new anti-lipopolysaccharide factor (ALF) gene with its SNP polymorphisms related to WSSV-resistance of Litopenaeus vannamei. Fish Shellfsh Immunol 39: 24-33.

Lo, C., Chen, C., Peng, S., Chen, Y., Chou, C., Yeh, P., Huang, C., Chou, H., Wang, C. and Kou, G. 1996. Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. Dis Aquat Org 25: 133-141.

Lo, C., Ho, C., Chen, C., Liu, K., Chiu, Y., Yeh, P., Peng, S., Hsu, H., Liu, H., Chang, C., Su, M., Wang, C. and Kou. G. 1997. Detection and tissue tropism of white spot syndrome baculovirus (WSBV) in captured brooders of Penaeus monodon with a special emphasis on reproductive organs. Dis Aquat Org 30: 53-72.

Luo, T., Zhang, X., Shao, Z. and Xu, X. 2003. PmAV, a novel gene involved in virus resistance of shrimp Penaeus monodon. FEBS Lett 551: 53-57.

Mathew, S., Kumar, K.A., Anandan, R., Nair, P.G.V. and Devadasan, K. 2007. Changes in tissue defence system in white spot syndrome virus (WSSV) infected Penaeus monodon. Comp Biochem Phys C 145: 315-320.

Muniesa, A., Ferreira, C., Fuertes, H., Halaihel, N. and de Blas, I. 2014. Estimation of the Relative Sensitivity of qPCR Analysis Using Pooled Samples. PLoS ONE 9(4): e93491.

Peraza-Gomez, V., Luna-Gonsalwz, A., Gonzales-Prieto, J., Fierro-Coronado, A. and Gomzalez-Ocampo, H. 2014. Protective effect of microbial immunostimulants and antiviral plants against WSSV in Litopenaeus vannamei cultured under laboratory conditions. Aquaculture 420-421: 160-164.

Peng, X., Wood, C.L., Blalock, E.M., Chen, K.C., Landfeld, P.W. and Stromberg, A.J. 2003 Statistical implications of pooling RNA samples for microarray experiments. BMC Bioinformatics 4 : 1-9.

Prastowo, B.W., Rahardianti, R., Nur, E.M. and Taslihan, A. 2009 Profl heterogenitas genetik induk udang windu (Penaeus monodon) turunan F1 melalui analisis DNA mitokondria-RFLP dan RAPD [Genetic heterogeneity profle of giant tiger prawn (Penaeus monodon) broodstock F1 revealed by mitochondria DNA-RFLP and RAPD]. J Fish Sci XI(1): 25-30.

Prastowo, B.W., Pancoro, A., Susanto, A., Nur, E.M. and Rahardianti, R. 2010. Pure line Selection of Black Tiger Shrimp Broodstock through Microsatellite Marker. Ministry of Marine and Fisheries, Jakarta.

Purnamaningrum, A. 2015. Variasi Genetik Morfologis dan Molekular Udang Windu (Penaeus monodon Fabricius, 1798) Hasil Inbreeding G7 dan Outcrossing dengan Induk Alam [Morphological and Molecular Variation of Giant Tiger Prawn (Penaeus monodon Fabricius, 1798) from Inbreeding of G7 and Outcrossing of G7 with Natural Broodstock]. Master’s dissertation, Universitas Gadjah Mada.

Reddy, A., Jeyasekaran, G. and Shakila, R. 2013. Morphogenesis, pathogenesis, detection, and transmission risks of white spot syndrome virus in shrimps. Fish Aquacult J: FAJ-66. Schmittgen, T.D. and Livak, K.J. 2008. Analyzing real-time data by the comparative Ct method. Nat Protoc 3(6): 1101-1108.

Taylor, S.M., Juliano, J.J., Trottman, P.A., Griffn, J.B., Landis, S.H., Kitsa, P., Tshefu, A.K. and Meshnick, S.R. 2010. HighThroughput Pooling and Real Time PCRBased Strategy for Malaria Detection. J Clin Microbiol 48(2): 512-519.

Tonganunt M., Saelee M., Chotigeat, M. and Ponghdara, A. 2009. Identifcation of a receptor for activated protein kinase C1 (Pm-RACK1), a cellular gene product from black tiger shrimp (Penaeus monodon) interacts with a protein, VP9 from the white spot syndrome virus. Fish Shellfsh Immunol 26: 509-514.

Vatanavicharn, T., Prapavorarat, A., Jaree, P., Somboonwiwat, K. and Tassanakajon, A. 2014. PmVRP15, a novel responsive protein from the black tiger shrimp, Penaeus monodon, promoted white spot syndrome virus replication. PLoS ONE 9(3): e91930.

Wang, Y. and Chang, P. 2000. Yellow head virus infection in the giant tiger prawn Penaeus monodon cultured in Taiwan. Fish Pathol 35(1): 1-10.

Wang, P.H., Gu, Z.H., Wan, D.H., Liu, B.D., Huang, X.D., Weng, S.P., Yu, X.Q. and He, J.G. 2013. The shrimp IKK-NF-κB signaling pathway regulates antimicrobial peptide expression and may be subverted by white spot syndrome virus to facilitate viral gene expression. Cell Moll Immunol 10: 423-436.


Article Metrics

Abstract views : 2420 | views : 1965


  • There are currently no refbacks.

Copyright (c) 2017 Indonesian Journal of Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.