The potency of Pentagamavunone‐0 (PGV‐0) as chemopreventive agent for the formation and growth of breast cancer as revealed in 3D model

Wulandari Wulandari(1), Muthi’ Ikawati(2), Edy Meiyanto(3*)

(1) Graduate School, Universitas Gadjah Mada, Jl. Teknika Utara, Yogyakarta 55281, Indonesia; Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author


Pentagamavunone‐0 (PGV‐0) or 2,5‐bis(4’‐hydroxy‐3‐methoxybenzylidine)‐cyclopentanone is a curcumin analogue that exhibits anticancer activity in breast cancer cells. However, most of previous reports are limited to the use of two‐dimensional (2D) cell culture. The use of three‐dimensional (3D) cell culture model in cancer research can represent the real condition of cancer growth in patients better than the 2D culture. The purpose of this study was to determine the anticancer activity of PGV‐0 on a 3D model of HCC 1954 breast cancer cells. HCC 1954 cells were grown in the 3D culture in the presence of PGV‐0, and the spheroid formation and growth of formed spheroids were observed using microscope at 24 and 96 h, respectively. The cytotoxic effects were measured by MTT assay. PGV‐0 inhibited the formation and growth of spheroids at the concentration as low as 60 µM. The cytotoxic effect of PGV‐0 appeared in a dose‐dependent manner with the IC50 value of 70.9 µM. The results of this study indicate that PGV‐0 has an anticancer activity on a 3D model of HCC 1954 breast cancer cell line. Therefore, the result supported the potency of PGV‐0 as cancer chemopreventive agent.


3D model; chemoprevention; cytotoxic; HCC 1954 breast cancer cells; Pentagamavunone‐0 (PGV‐0)

Full Text:



Bashari MH, Huda F, Tartila TS, Shabrina S, Putri T, Qomarilla N, Atmaja H, Subhan B, Sudji IR, Meiyanto E. 2019. Bioactive compounds in the ethanol extract of marine sponge Stylissa carteri demonstrates potential anti­cancer activity in breast cancer cells. Asian Pac J Cancer Prev. 20(4):1199–1206. doi:10.31557/APJCP.2019.20.4.1199.

Boutin ME, Voss TC, Titus SA, Cruz­Gutierrez K, Michael S, Ferrer M. 2018. A high­throughput imaging and nuclear segmentation analysis protocol for cleared 3D culture models. Sci Rep. 8:11135. doi:10.1038/s41598­018­29169­0.

Da’i M, Meiyanto E, Supardjan A. 2004. Efek antiproliferatif Pentagamavunon­0 terhadap sel myeloma [Antiproliferative effect of Pentagamavunon­0 on myeloma cells]. Sains Kesehatan. 17(1):1–11.

Da’i M, Meiyanto E, Supardjan A, Jenie UA, Kawaichi M. 2007. Potensi antiproliferatif analog kurkumin Pentagamavunon terhadap sel kanker payudara T47D [Antiproliferative effects of curcumin analogue Pentagamavunone in T47D breast cancer cells]. Artocarpus. 7(1):14–20.

Da’i M, Suhendi A, Meiyanto E, Jenie UA, Kawaichi M. 2017. Apoptosis induction effect of curcumin and its analogs Pentagamavunon­0 and Pentagamavunon­1 on cancer cell lines. Asian J Pharm Clin Res. 10(3):373–376. doi:10.22159/ajpcr.2017.v10i3.16311.

Edmondson R, Broglie JJ, Adcock AF, Yang L. 2014. Three­dimensional cell culture systems and their applications in drug discovery and cell­based biosensors. Assay Drug Dev Technol. 12(4):207–218. doi:10.1089/adt.2014.573.

Hermawan A, Fitriasari A, Junedi S, Ikawati M, Haryanti S, Widaryanti B, Da’i M, Meiyanto E. 2011. PGV­ 0 and PGV­1 increased apoptosis induction of doxorubicin on MCF­7 breast cancer cells. Pharmacon. 12(2):55–59. doi:10.23917/pharmacon.v12i2.32.

Ho WY, Yeap SK, Ho CL, Rahim RA, Alitheen NB. 2012. Development of multicellular tumor spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. PLoS ONE. 7(9):e44640. doi:10.1371/journal.pone.0044640.

Ikawati M, Purwanto H, Imaniyyati NN, Afifah A, Sagiyo ML, Yohanes J, Sismindari, Ritmaleni. 2018. Cytotoxicity of Tetrahydropentagamavunon­0 (THPGV­ 0) and Tetrahydropentagamavunon­1 (THPGV­1) in several cancer cell lines. Indones J Pharm. 29(4):179– 187. doi:10.14499/indonesianjpharm29iss4pp179.

Ikawati M, Septisetyani EP. 2018. Pentagamavunone­ 0 (PGV­0), a curcumin analog, enhances cytotoxicity of 5­fluorouracil and modulates cell cycle in WiDr colon cancer cells. Indones J Cancer Chemoprev. 9(1):23–31. doi:10.14499/indonesianjcanchemoprev9iss1pp23­ 31.

Larasati YA, Yoneda­Kato N, Nakamae I, Yokoyama T, Meiyanto E, Kato J. 2018. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci Rep. 8:2039. doi:10.1038/s41598­018­20179­6.

Liu X, Chu K. 2014. E­cadherin and gastric cancer: cause, consequence, and applications. Biomed Res International. p. e637308. doi:10.1155/2014/637308.

Meiyanto E. 1999. Kurkumin sebagai obat kanker: menelusuri mekanisme aksinya [Curcumin as an antineoplastic agent: the elucidation of its molecular mechanism of action]. Majalah Farmasi Indonesia. 10(4):224–236.

Meiyanto E, Hermawan A, Anindyajati A. 2012. Natural products for cancer­targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pac J Cancer Prev. 13(2):427–436. doi:10.7314/APJCP.2012.13.2.427.

Meiyanto E, Putri DPP, Susidarti RA, Sardjiman, Fitriasari A, Husnaa U, Purnomo H, Kawaichi M. 2014. Curcumin and its analogues (PGV­0 and PGV­1) enhance sensitivity of resistant MCF­7 cells to doxorubicin through inhibition of HER2 and NF­kB activation. Asian Pac J Cancer Prev. 15(1):179–184. doi:10.7314/APJCP.2014.15.1.179.

Mohammadian M, Salami M, Momen S, Alavi F, EmamDjomeh Z, Moosavi­Movahedi AA. 2019. Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocoll. 87:902–914. doi:10.1016/j.foodhyd.2018.09.001.

Pistollato F, Iglesias RC, Ruiz R, Aparicio S, Crespo J, Lopez LD, Giampieri F, Battino M. 2017. The use of natural compounds for the targeting and chemoprevention of ovarian cancer. Cancer Lett. 411:191–200. doi:10.1016/j.canlet.2017.09.050.

Sant S, Johnston PA. 2017. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov Today Technol. 23:27–36. doi:10.1016/j.ddtec.2017.03.002.

Septisetyani EP, Ikawati M, Widaryanti B, Meiyanto E. 2008. Apoptosis mediated cytotoxicity of curcumin analogues PGV­0 and PGV­1 in WiDr cell line. Proceeding of The International Symposium on Molecular Targeted Therapy Yogyakarta: Faculty of Pharmacy Universitas Gadjah Mada. ISBN: 978­979­ 95107­6­1,:p.48–56.

Utomo RY, Putri H, Pudjono, Susidarti RA, Jenie RI, Meiyanto E. 2017. Synthesis and cytotoxic activity of 2,5­bis(4­boronic acid)benzylidine cyclopentanone on HER2 overexpressedcancer cells. Indones J Pharm. 28(2):74–81. doi:10.14499/indonesianjpharm28iss2pp74. 


Article Metrics

Abstract views : 139 | views : 153


  • There are currently no refbacks.

Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.