Metagenomic analysis of intestinal microbiota in geese from different farming systems in Gunungpati, Semarang
R Susanti(1*), Ari Yuniastuti(2), Fitri Arum Sasi(3), Muchamad Dafip(4)
(1) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Sekaran Gunungpati, Semarang, Jawa Tengah 50229
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Sekaran Gunungpati, Semarang, Jawa Tengah 50229
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Sekaran Gunungpati, Semarang, Jawa Tengah 50229
(4) Master Degree Program in Biomedical Sciences, Faculty of Medicine, Universitas Diponegoro, Jl. Prof. Sudarto SH, Tembalang, Semarang, Jawa Tengah 50275
(*) Corresponding Author
Abstract
The diversity of intestinal bacteria in geese correlates with environmental conditions, rearing methods, and consumed feeds. The intestinal bacteria composition is useful for the absorption of nutrition, improving the metabolism, and may be related to the immune system. This study was conducted to examine the intestinal bacteria composition and the diversity of maintained goose in aviaries and barns. This research was an observational exploratory. Five geese were taken purposively from local breeders in Gunungpati District, Semarang City. A total of 5 g of intestinal contents from each sample was used for microbial genome isolation. Then, the genome was amplified to collect 16S rRNA gene region V3-V4. The amplicons were then sequenced using the next generation sequencing (NGS) method (Illumina high-throughput sequencing; paired-end reads) and analyzed using QIIME2 to identify bacterial species. In addition, GC-MS was performed to identify and measure fatty acid contents in the intestinal. The results showed that both rearing and caged goose contained nine phyla of intestinal bacteria. The number of intestinal bacteria of barn geese (SU) reached 32,748 Operational Taxonomy Units (OTU); higher than aviary geese (SK), which was 11,646 OTU. The intestinal bacteria community in barn geese was approved by Phylum TM7 (Saccharibacteria candidate) (53.18%), followed by Firmicutes (32.51%) and Bacteriodetes (5.42%). Whereas on SK Firmicutes was compiled 49.3 4% of total OTU, TM7 (S. candidate) up to 21.17%, and Actinobacteria up to 15.99 %. The abundance of TM7 may contribute to high 9,12-octadecadienoic acid production, while Firmicutes was related to the high production of oleic acid. Based on these data, the reared geese had a more abundant diversity of bacteria than the caged one.
Keywords
Full Text:
PDFReferences
Altizer S, Bartel R, Han BA. 2011. Animal migration and infectious disease risk. Science. 331(6015):296–302. doi:10.1126/science.1194694.
Batta AK, Salen G, Batta P, Tint GS, Alberts DS, Earnest DL. 2002. Simultaneous quantitation of fatty acids, sterols and bile acids in human stool by capillary gasliquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 775(2):153–161. doi:10.1016/S15700232(02)002891.
Beckmann L, Simon O, Vahjen W. 2006. Isolation and identification of mixed linked βglucan de grading bacteria in the intestine of broiler chickens and partial characterization of respective 1,31,4β glucanase activities. J Basic Microbiol. 46(3):175– 185. doi:10.1002/jobm.200510107.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holman SP. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 13(7):581–583. doi:10.1038/nmeth.3869.DADA2.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. 2010. QI IME allows analysis of highthroughput community sequencing data. Nat Methods. 7(5):335–336. doi:10.1038/nmeth.f.303.QIIME.
Chao A. 1984. Nonparametric Estimation of the Number of Classes in a Population. Scand Stat Theory Appl. 11(4):265.
den Besten G, Van Eunen K, Groen AK, Venema K, Rei jngoud DJ, Bakker BM. 2013. The role of short chain fatty acids in the interplay between diet, gut mi crobiota, and host energy metabolism. J Lipid Res. 54(9):2325–2340. doi:10.1194/jlr.R036012.
Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, Roers A, Weaver CT, Lee JJ, Gilbert JA, et al. 2013. Adenomatous polyps are drivenbymicrobeinstigated focal inflammation and are controlled by IL10producing T cells. Cancer Res. 73(19):5905–5913. doi:10.1158/0008 5472.CAN131511.
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Ander sen GL. 2006. Greengenes, a chimerachecked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 72(7):5069–5072. doi:10.1128/AEM.0300605.
DominguezBello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. 2010. De livery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 107(26):11971– 11975. doi:10.1073/pnas.1002601107.
Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB, Ahn J. 2015. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS ONE. 10(4):1–14. doi:10.1371/journal.pone.0124599.
Eneroth P, Hellstrom K, Sjovall J. 1968. A Method for Quantitative Determination of bile acid in human fe ces. Acta Chem Scand. 22(6):1720–1744.
Grond K. 2017. Development and dynamics of gut microbial communities of migratory shorebirds in the West ern Hemisphere. Ph.D. thesis, Kansas State University. doi:10.1017/CBO9781107415324.004.
Harris MT, Brown JD, Goekjian VH, Luttrell MP, Poul son RL, Wilcox BR, Swayne DE, Stallknecht DE. 2010. Canada geese and the epidemiology of avian influenza viruses. J Wildl Dis. 46(3):981–987. doi:10.7589/0090355846.3.981.
He X, McLean JS, Edlund A, Yooseph S, Hall AP, Liu SY, Dorrestein PC, Esquenazi E, Hunter RC, Cheng G, et al. 2015. Cultivation of a humanassociated TM7 phylotype reveals a reduced genome and epibi otic parasitic lifestyle. Proc Natl Acad Sci USA. 112(1):244–249. doi:10.1073/pnas.1419038112.
Holm JB, Humphrys MS, Robinson CK, Settles ML, Ott S, Fu L, Yang H, Gajer P, He X, McComb E, et al. 2019. Ultrahigh Throughout Multiplexing and Sequencing of >500BasePair Amplicon Regions on the Illumina HiSeq 2500 Platform. mSystems. 4(1):1– 10. doi:10.1128/msystems.0002919.
Hunter JD. 2007. Matplotlib: A 2D graphics environment. Comput Sci Eng. 9(3):99–104. doi:10.1109/MCSE.2007.55.
Jamroz D, Jakobsen K, Bach Knudsen KE, Wiliczkiewicz A, Orda J. 2002. Digestibility and energy value of nonstarch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comp Biochem Physiol A Mol Integr Physiol. 131(3):657–668. doi:10.1016/S1095 6433(01)005177.
Kim SH. 2018. Challenge for one health: Cocirculation of zoonotic h5n1 and h9n2 avian influenza viruses in Egypt. Viruses. 10(3):1–16. doi:10.3390/v10030121.
Leung TL, Koprivnikar J. 2016. Nematode parasite diversity in birds: the role of host ecology, life his tory and migration. J Anim Ecol. 85(6):1471–1480. doi:10.1111/13652656.12581.
Li Y, Xu Q, Huang Z, Lv L, Liu X, Yin C, Yan H, Yuan J. 2016. Effect of Bacillus subtilis CGMCC 1.1086 on the growth performance and intestinal microbiota of broilers. J Appl Microbiol. 120(1):195– 204. doi:10.1111/jam.12972.
Liu YJ, Liu SJ, Drake HL, Horn MA. 2011. Alphaproteobacteria dominate active 2methyl4 chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere. Environ Microbiol. 13(4):991–1009. doi:10.1111/j.1462 2920.2010.02405.x.
Magurran AE. 2004. Measuring biological diversity. Ox ford: Blackwell.
Mandl JN, Ahmed R, Barreiro LB, Daszak P, Epstein JH, Virgin HW, Feinberg MB. 2015. Reservoir host immune responses to emerging zoonotic viruses. Cell. 160(12):20–35. doi:10.1016/j.cell.2014.12.003.
McDonald D, Price MN, Goodrich J, Nawrocki EP, De santis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6(3):610– 618. doi:10.1038/ismej.2011.139.
Pan D, Yu Z. 2014. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 5(1):108–119. doi:10.4161/gmic.26945.
Phuong DQ, Dung NT, Jørgensen PH, Handberg KJ, Vinh NT, Christensen JP. 2011. Susceptibility of Muscovy (Cairina Moschata) and mallard ducks (Anas Platyrhynchos) to experimental infections by different genotypes of H5N1 avian influenza viruses. Vet Microbiol. 148(24):168–174. doi:10.1016/j.vetmic.2010.09.007.
Pielou EC. 1966. The measurement of diversity in different types of biological collections. J Theor Biol. 13:131–144. doi:10.1016/00225193(66)900130.
Shannon CE, Weaver W. 1949. The Mathematical Theory of Communication. Champaign, IL.
Simpson EH. 1949. Measurement of Diversity. Nature. 163(1):688. doi:10.1038/163688a0.
Singh KM, Shah TM, Reddy B, Deshpande S, Rank DN, Joshi CG. 2014. Taxonomic and genecentric metagenomics of the fecal microbiome of low and high feed conversion ratio (FCR) broilers. J Appl Genet. 55(1):145–154. doi:10.1007/s1335301301794.
Susanti R, Fibriana F, Sasi FA. 2018. Genotype of javanese backyard waterfowl based on antiviral myxovirus gene. Warasan Songkhla Nakharin. 40(3):498– 505. doi:10.14456/sjstpsu.2018.74.
Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. 2011. Environmental and gut Bacteroidetes: The food connection. Front Microbiol. 2(1):1–16. doi:10.3389/fmicb.2011.00093.
Wang W, Cao J, Yang F, Wang X, Zheng S, Sharshov K, Li L. 2016. Highthroughput sequencing reveals the core gut microbiome of Barheaded goose (Anser indicus) in different wintering areas in Tibet. Microbiology open. 5(2):287–295. doi:10.1002/mbo3.327.
Yamak US, Sarica M, Boz MA, Ucar A. 2016. The effect of production system (barn and free range), slaughtering age and gender on carcass traits and meat quality of partridges (Alectoris chukar). Br Poult Sci. 57(2):185–192. doi:10.1080/00071668.2016.1144920.
Yang H, Xiao Y, Gui G, Li J, Wang J, Li D. 2018. Microbial community and shortchain fatty acid profile in gastrointestinal tract of goose. Poult Sci. 97(4):1420– 1428. doi:10.3382/ps/pex438.
Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, RossellóMóra R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea us ing 16S rRNA gene sequences. Nat Rev Microbiol. 12(9):635–645. doi:10.1038/nrmicro3330.
Yeoman CJ, Chia N, Jeraldo P, Sipos M, Goldenfeld ND, White BA. 2012. The microbiome of the chicken gastrointestinal tract. Anim Health Res Rev. 13(1):89– 99. doi:10.1017/S1466252312000138.
Zhao Y, Li X, Sun S, Chen L, Jin J, Liu S, Song X, Wu C, Lu L. 2019. Protective role of dryland rearing on netting floors against mortality through gut microbiotaassociated immune performance in Shaoxing ducks. Poult Sci. 98(10):4530–4538. doi:10.3382/ps/pez268.
Zheng A, Luo J, Meng K, Li J, Bryden WL, Chang W, Zhang S, Wang LX, Liu G, Yao B. 2016. Probi otic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genomics. 17(1):1–12. doi:10.1186/s1286401623715.
Zhou JY, Shen HG, Chen HX, Tong GZ, Liao M, Yang HC, Liu JX. 2006. Characterization of a highly pathogenic H5N1 influenza virus derived from bar headed geese in China. J Gen Virol. 87(7):1823–1833. doi:10.1099/vir.0.818000.
Zhu C, Song W, Tao Z, Liu H, Zhang S, Xu W, Li H. 2020. Analysis of microbial diversity and com position in small intestine during different development times in ducks. Poult Sci. 99(2):1096–1106. doi:10.1016/j.psj.2019.12.030.
DOI: https://doi.org/10.22146/ijbiotech.53936
Article Metrics
Abstract views : 3770 | views : 3276Refbacks
- There are currently no refbacks.
Copyright (c) 2020 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.