Chitosan suppresses the expression level of WRKY17 on red chili (Capsicum annuum) plant under drought stress

Muhammad Abdul Aziz(1*), Rizkita Rachmi Esyanti(2), Karlia Meitha(3), Fenny Martha Dwivany(4), Hany Husnul Chotimah(5)

(1) 1. School of Life Sciences and Technology, Institut Teknologi Bandung, West Java, Indonesia 3. Indonesian Research Institute For Biotechnology and Bioindustry, Jl. Taman Kencana No. 1 Bogor, Indonesia 16128
(2) 1. School of Life Sciences and Technology, Institut Teknologi Bandung, West Java, Indonesia
(3) 1. School of Life Sciences and Technology, Institut Teknologi Bandung, West Java, Indonesia
(4) 1. School of Life Sciences and Technology, Institut Teknologi Bandung, West Java, Indonesia 2. Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, West Java, Indonesia
(5) 1. School of Life Sciences and Technology, Institut Teknologi Bandung, West Java, Indonesia
(*) Corresponding Author


Chili pepper plays a significant role in the global market. However, the production is often impeded by drought stress involving WRKY genes as the defense regulator. Chitosan is considered as a promising alternative fertilizer and defense elicitor. Hence, this study aimed to determine the role of chitosan in improving plant growth and survival of red chili pepper against drought stress. At the onset of the generative phase, chili plants were subjected to 1 mg mL‐1 chitosan, 50 percent drought, or chitosan‐drought treatment. Observations were made on several growth parameters, opened stomata, and WRKY gene expression. The results showed that chitosan‐drought treatment decreased plant growth and yielded significantly. The percentage of opened stomata was recorded at 0.56‐fold lower than control. It was followed by the decrease of the relative expression of WRKY17 and WRKY53 genes up to 0.56 and 0.72‐fold lower than control, respectively. Therefore, we suggested that the double treatment of chitosan‐drought might decrease plant growth performance but increase the defense system by suppressing the expression level of the WRKY17 gene. Interestingly, the drought treatment significantly increased WRKY17 expression level up to 7‐fold higher than control. Hence, it was suggested that WRKY17 has a specific role in response to drought stress.


red chili; chitosan; drought; growth performance; gene expression

Full Text:



Arve LE, Torre S, Olsen JE, Tanino KK. 2011. Stomatal Responses to Drought Stress and Air Humidity. In: A Shanker, B Venkateswarlu, editors, Abiotic Stress in Plants, chapter 12. Rijeka: IntechOpen. doi:10.5772/24661.

Cai R, Dai W, Zhang C, Wang Y, Wu M, Zhao Y, Ma Q, Xiang Y, Cheng B. 2017. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta. 246(6):1215–1231. doi:10.1007/s00425­017­ 2766­9.

Dorji K, Behboudian MH, Zegbe­Domínguez JA. 2005. Water relations, growth, yield, and fruit quality of hot pepper under deficit irrigation and partial rootzone drying. Sci Hortic. 104(2):137–149. doi:10.1016/j.scienta.2004.08.015.

Duriat A, Gunaeni N, Wulandari A. 2007. Penyakit Penting Tanaman Cabai dan Pengendaliannya. Bandung: BALITSA.

Dzung NA, Khanh VTP, Dzung TT. 2011. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr Polym. 84(2):751–755. doi:10.1016/j.carbpol.2010.07.066.

Esyanti RR, Dwivany FM, Mahani S, Nugrahapraja H, Meitha K. 2019. Foliar application of chitosan enhances growth and modulates expression of defense genes in chilli pepper (Capsicum annuum L.). Aust J Crop Sci. 13(1):55–60. doi:10.21475/ajcs.19.13.01.p1169.

Fibriyanti A. 2008. Pengaruh filter cahaya dan media tanam terhadap pertumbuhan dan kualitas penampilan tanaman. Ph.D. thesis, Institut Pertanian Bogor, Bogor. Him TR, Radhouane L. 2015. Growth and yield responses of two Tunisian pepper (Capsicum annuum L.) varieties to salinity and drought stress. Int J Sci. 14(2):159–167.

Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, Gargano M, Faoro F. 2009. Chitosan antitranspirant activity is due to abscisic acid­dependent stomatal closure. Environ Exp Bot. 66(3):493–500. doi:10.1016/j.envexpbot.2009.01.004.

KEMENTAN. 2015. Statistik Produksi Hortikultura Tahun 2014. Kementerian Pertanian Direktorat Jenderal Hortikultura.

KEMENTAN. 2016. Outlook Komoditas Pertanian Sub Sektor Hortikultura : Cabai. Jakarta: Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian Tahun 2016.

Khan AL, Shin JH, Jung HY, Lee IJ. 2014. Regulations of capsaicin synthesis in Capsicum annuum L. by Penicillium resedanum LK6 during drought conditions. Sci Hortic. 175:167–173. doi:10.1016/j.scienta.2014.06.008.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real­time quantitative PCR and the 2­ΔΔCT method. Methods. 25(4):402–408.

Malekpoor F, Pirbalouti AG, Salimi A. 2016. Effect of foliar application of chitosan on morphological and physiological characteristics of basil under reduced irrigation. Res Crop. 17(2):354–359. doi:10.5958/2348­7542.2016.00060.7.

Mondal MM, Puteh AB, Dafader NC, Rafii MY, Malek MA. 2013. Foliar application of chitosan improves growth and yield in maize. J Food, Agric Environ. 11(2):520–523.

Ohta K, Morishita S, Suda K, Kobayashi N, T H. 2004. Effects of chitosan soil mixture treatment in the seedling stage on the growth and flowering of several ornamental plants. J Hortic Sci. 73(1):66–68. doi:10.2503/jjshs.73.66.

Pichyangkura R, Chadchawan S. 2015. Biostimulant activity of chitosan in horticulture. Sci Hortic. 196:49– 65. doi:10.1016/j.scienta.2015.09.031.

Salachna P, Zawadzińska A. 2014. Effect of chitosan on plant growth, flowering and corms yield of potted freesia. Ecol Eng. 15(3):97–102. doi:10.12911/22998993.1110223.

Showemimo, Olarewaju. 2007. Drought Tolerance Indices in Sweet Pepper (Capsicum annuum L.). Int J Plant Breed Genet. 1:29–33. doi:10.3923/ijpbg.2007.29.33.

Sumarni N, Muharam A. 2005. Budidaya Tanaman Cabai Merah. Bandung: BALITSA.

Sun Y, Yu D. 2015. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement. Plant Cell Rep. 34(8):1295– 1306. doi:10.1007/s00299­015­1787­8.

Sung Y, Chang YY, Ting NL. 2005. Capsaicin biosynthesis in water­stressed hot pepper fruits. Bot Bull Acad Sin. 46(1):35–42. doi:10.7016/BBAS.200501.0035.

Taylor JE, Whitelaw CA. 2001. Signals in abscission. New Phytol. 151(2):323–339. doi:10.1046/j.0028­ 646x.2001.00194.x.

Wasternack C. 2014. Action of jasmonates in plant stress responses and development ­ Applied aspects. Biotechnol Adv. 32(1):31–39. doi:10.1016/j.biotechadv.2013.09.009.

Yan H, Jia H, Chen X, Hao L, An H, Guo X. 2014. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through aba signaling and the modulation of reactive oxygen species production. Plant Cell Physiol. 55(12):2060–2076. doi:10.1093/pcp/pcu133.

Yan Y, Jia H, Wang F, Wang C, Liu S, Guo X. 2015. Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana. Front Physiol. 6(SEP):1–16. doi:10.3389/fphys.2015.00265.


Article Metrics

Abstract views : 2584 | views : 2503


  • There are currently no refbacks.

Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.