Distinguishing resistances of transgenic sugarcane generated from RNA interference and pathogen‐derived resistance approaches to combating sugarcane mosaic virus

https://doi.org/10.22146/ijbiotech.65256

Weny Nailul Hidayati(1), Retnosari Apriasti(2), Hardian Susilo Addy(3), Bambang Sugiharto(4*)

(1) Post Graduate Program for Biotechnology, University of Jember, Jl. Kalimantan No.37, Jember 68121
(2) Center for Development of Advanced Sciences and Technology (CDAST), University of Jember, Jl. Kalimantan No.37, Jember 68121
(3) Faculty of Agriculture,University of Jember, Jl. Kalimantan No. 37, Jember 68121
(4) Center for Development of Advanced Sciences and Technology (CDAST), University of Jember, Jl. Kalimantan No.37, Jember 68121; Biology Department, University of Jember, Jl. Kalimantan No.37, Jember 68121
(*) Corresponding Author

Abstract


Sugarcane mosaic virus (SCMV) is a causative agent that reduces growth and productivity in sugarcane. Pathogen‐derived resistance (PDR) and RNA interference (RNAi) are the most common approaches to generating resis‐ tance against plant viruses. Two types of transgenic sugarcane have been obtained by PDR and RNAi methods using a gene‐encoding coat protein (CP) of SCMV (SCMVCp). This research aimed to distinguish resistance of the two transgenic sugarcanes in combating SCMV through artificial viral inoculation. The experiment was conducted using transgenic sugar‐ cane lines validated by PCR analysis. Insertion of gene‐encoding CP in the transgenic lines was confirmed by amplification of 702 bp of DNA fragment of SCMVCp. After viral inoculation, mosaic symptoms appeared earlier, at 21 days post inoculation (dpi) in PDR transgenic lines, but was at 26 dpi in RNAi transgenic lines. Symptom observation showed that 77.8% and 50% of the inoculated plants developed mosaic symptoms in PDR and RNAi transgenic lines, respectively. RT‐PCR analysis revealed that the nuclear inclusion protein b (Nib) gene of SCMV was amplified in the symptomatic leaves in plants classified as susceptible lines. Immunoblot analysis confirmed presence of viral CP with a molecular size of 37 kDa in the susceptible lines. Collectively, these results indicated that the RNAi approach targeting the gene for CP effectively produces more resistance against the SCMV infection in transgenic sugarcane compared to the PDR approach.


Keywords


Sugarcane mosaic virus (SCMV; pathogen‐derived resistance; RNA interference; viral resistance; transgenic sugar‐ cane

Full Text:

PDF


References

Addy HS, Nurmalasari, Wahyudi AHS, Sholeh A, Anugrah C, Iriyanto FES, Darmanto W, Sugiharto B. 2017. Detection and response of sugarcane against the infection of Sugarcane mosaic virus (SCMV) in Indonesia. Agronomy. 7(3). doi:10.3390/agronomy7030050.

Ammara UE, Mansoor S, Saeed M, Amin I, Briddon RW, Al­Sadi AM. 2015. RNA interferencebased resistance in transgenic tomato plants against Tomato yellow leaf curl virus­Oman (TYLCV­OM) and its associated betasatellite. Virol J. 12(1). doi:10.1186/s12985­015­0263­y.

Anurag S. 2013. Virus­induced symptoms in plants: A review of interactions between viral trafficking and RNA silencing. Philipp Agric Sci. 96(2):210–218.

Apriasti R, Widyaningrum S, Hidayati WN, Sawitri WD, Darsono N, Hase T, Sugiharto B. 2018. Full sequence of the coat protein gene is required for the induction of pathogen­derived resistance against sugarcane mosaic virus in transgenic sugarcane. Mol Biol Rep. 45(6):2749–2758. doi:10.1007/s11033­018­4326­1.

Bendahmane M, Szécsi J, Chen I, Berg RH, Beachy RN. 2002. Characterization of mutant tobacco mosaic virus coat protein that interferes with virus cell­to­cell movement. Proc Natl Acad Sci USA. 99(6):3645– 3650. doi:10.1073/pnas.062041499.

Besong­Ndika J, Ivanov KI, Hafrèn A, Michon T, Mäkinen K. 2015. Cotranslational Coat Protein­Mediated Inhibition of Potyviral RNA Translation. J Virol. 89(8):4237–4248. doi:10.1128/jvi.02915­14.

Campo S, Gilbert KB, Carrington JC. 2016. Small RNABased Antiviral Defense in the Phytopathogenic Fungus Colletotrichum higginsianum. PLoS Pathog. 12(6). doi:10.1371/journal.ppat.1005640.

Chen H, Cao Y, Li Y, Xia Z, Xie J, Carr JP, Wu B, Fan Z, Zhou T. 2017a. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection. New Phytol. 215(3):1156– 1172. doi:10.1111/nph.14645.

Chen Z, hao Zhang M, ping Zhou X, xiang Wu J. 2017b. Development and detection application of monoclonal antibodies against Zucchini yellow mosaic virus. J Integr Agric. 16(1):115–124. doi:10.1016/S2095­3119(16)61416­8.

Darsono N, Azizah NN, Putranty KM, Astuti NT, Addy HS, Darmanto W, Sugiharto B. 2018. Production of a polyclonal antibody against the recombinant coat protein of the sugarcane mosaic virus and its application in the immunodiagnostic of sugarcane. Agronomy. 8(6). doi:10.3390/agronomy8060093.

Gadhave KR, Gautam S, Rasmussen DA, Srinivasan R. 2020. Aphid transmission of potyvirus: The largest plant­infecting RNA virus genus. Viruses. 12(7). doi:10.3390/v12070773.

Gao B, Cui XW, Li XD, Zhang CQ, Miao HQ. 2011. Complete genomic sequence analysis of a highly virulent isolate revealed a novel strain of Sugarcane mosaic virus. Virus Genes. 43(3). doi:10.1007/s11262­011­ 0644­2.

Helliwell CA, Waterhouse PM. 2005. Constructs and methods for hairpin RNA­mediated gene silencing in plants. Methods Enzymol. 392:24–35. doi:10.1016/S0076­6879(04)92002­2.

Kiss L, Veres S. 2017. Study of yellow rust infection on various winter wheat genotypes. J Agric Environ Sci. 4(2):27–32. doi:10.18380/szie.colum.2017.4.2.27.

Kumar PV, Sharma SK, Rishi N, Baranwal VK. 2018. Efficient immunodiagnosis of Citrus yellow mosaic virus using polyclonal antibodies with an expressed recombinant virion­associated protein. 3 Biotech. 8(1). doi:10.1007/s13205­017­1063­4.

Kumar P SR. 2013. Current Status of Sugarcane Transgenic: an Overview. Adv Genet Eng. 02(02).doi:10.4172/2169­0111.1000112.

Kumari A, Hada A, Subramanyam K, Theboral J, Misra S, Ganapathi A, Malathi VG. 2018. RNAi­mediated resistance to yellow mosaic viruses in soybean targeting coat protein gene. Acta Physiol Plant. 40(2). doi:10.1007/s11738­018­2608­9.

Lindbo JA, Dougherty WG. 1992. Pathogen­derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol Plant Microbe Interact. 5(2):144–153. doi:10.1094/MPMI­5­144.

Lindbo JA, Falk BW. 2017. The impact of ”coat proteinmediated virus resistance” in applied plant pathology and basic research. Phytopathology. 107(6):624–634. doi:10.1094/PHYTO­12­16­0442­RVW.

Lu B, Stubbs G, Culver JN. 1998. Coat protein interactions involved in tobacco mosaic tobamovirus cross­ protection. Virology. 248(2):188– 198. doi:10.1006/viro.1998.9280.

Majumdar R, Rajasekaran K, Cary JW. 2017. RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: Concepts and considerations. Front Plant Sci. 8. doi:10.3389/fpls.2017.00200.

Mehta R, Radhakrishnan T, Kumar A, Yadav R, Dobaria JR, Thirumalaisamy PP, Jain RK, Chigurupati P. 2013. Coat protein­mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium­mediated genetic transformation. Indian J Virol. 24(2):205–213. doi:10.1007/s13337­013­0157­9.

Mishra R, Verma RK, Sharma P, Choudhary DK, Gaur RK. 2014. Interaction between viral proteins with the transmission of Potyvirus. Arch Phtopatholog Plant Prot. 47(2):240–253. doi:10.1080/03235408.2013.807659.

Montes C, Castro Á, Barba P, Rubio J, Sánchez E, Carvajal D, Aguirre C, Tapia E, Dell´Orto P, Decroocq V, Prieto H. 2014. Differential RNAi responses of Nicotiana benthamiana individuals transformed with a hairpin­inducing construct during Plum pox virus challenge. Virus Genes. 49(2):325–338. doi:10.1007/s11262­014­1093­5.

Muhammad T, Zhang F, Zhang Y, Liang Y. 2019. RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells. 8(1):38. doi:10.3390/cells8010038.

Pratap D, Kumar S, Raj SK, Sharma AK. 2011. Agrobacterium­mediated transformation of eggplant (Solanum melongena L.) using cotyledon explants and coat protein gene of Cucumber mosaic virus. Indian J Biotechnol. 10(1):19–24.

Sengoda VG, Tsai WS, De La Peña RC, Green SK, Kenyon L, Hughes J. 2012. Expression of the Fulllength Coat Protein Gene of Tomato leaf curl Taiwan virus is Not Necessary for Recovery Phenotype in Transgenic Tomato. J Phytopathol. 160(5):213–219. doi:10.1111/j.1439­0434.2012.01887.x.

Sharma J, Purohit R, Hallan V. 2020. Conformational behavior of coat protein in plants and association with coat protein­mediated resistance against TMV. Braz J Microbiol. 51(3):893–908. doi:10.1007/s42770­020­ 00225­0.

Soosaar JL, Burch­Smith TM, Dinesh­Kumar SP. 2005. Mechanisms of plant resistance to viruses. Nat Rev Microbiol. 3(10):789–798. doi:10.1038/nrmicro1239.

Srivastava AK. 2012. Sugarcane production: Impact of climate change and its mitigation. Biodiversitas. 13(4):214–227. doi:10.13057/biodiv/d130408.

Widyaningrum S, Pujiasih DR, Sholeha W, Harmoko R, Sugiharto B. 2021. Induction of resistance to sugarcane mosaic virus by RNA interference targeting coat protein gene silencing in transgenic sugarcane. Mol Biol Rep. 48(3):3047–3054. doi:10.1007/s11033­ 021­06325­w.



DOI: https://doi.org/10.22146/ijbiotech.65256

Article Metrics

Abstract views : 2475 | views : 2769

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.