Potential of marine sponge Jaspis sp.‐associated bacteria as an antimicrobial producer in Enggano Island

https://doi.org/10.22146/ijbiotech.65943

Sipriyadi Sipriyadi(1*), Riziq Ilham Nurfahmi(2), Uci Cahlia(3), Risky Hadi Wibowo(4), Welly Darwis(5), Enny Nugraheni(6)

(1) Biology Department, Faculty of Mathematics and Natural Science, Universitas Bengkulu, Jl. W.R Supratman, Kandang Limun, Bengkulu 38125, Indonesia
(2) Biology Department, Faculty of Mathematics and Natural Science, Universitas Bengkulu, Jl. W.R Supratman, Kandang Limun, Bengkulu 38125, Indonesia
(3) Biology Department, Faculty of Mathematics and Natural Science, Universitas Bengkulu, Jl. W.R Supratman, Kandang Limun, Bengkulu 38125, Indonesia
(4) Biology Department, Faculty of Mathematics and Natural Science, Universitas Bengkulu, Jl. W.R Supratman, Kandang Limun, Bengkulu 38125, Indonesia
(5) Biology Department, Faculty of Mathematics and Natural Science, Universitas Bengkulu, Jl. W.R Supratman, Kandang Limun, Bengkulu 38125, Indonesia
(6) Medical Study Program, Faculty of Medicine and Health, Universitas Bengkulu, Jl. W.R Supratman, Kandang Limun, Bengkulu 38125, Indonesia
(*) Corresponding Author

Abstract


Sponges, a group of marine multicellular animals with a porous body structure, show potential for the production of bioactive compounds. Sponge‐associated bacteria are an alternative antimicrobial producer due to their high content of bioactive compounds. This study aimed to identify the highest‐potential antimicrobial‐producing bacteria isolate associated with Jaspis sp. sponges from Enggano island. The isolated bacteria were screened for antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans using cultures, supernatants, pellets, and crude extracts. The study also conducted genetic identification to determine the identity of the isolate with the greatest potency and its closest relationship using the 16S rRNA gene. The antimicrobial activity was determined by monitoring and measuring the diameter of the formed clear zones. The results of the observations of morphological characteristics revealed nine isolates from Jaspis sp. that each consisting of 6 JABS isolates and 3 JABB isolates. Based on isolates that had antimicrobial activity, JABS6 isolates had the best antimicrobial activity, with the diameter of inhibition zones of 24.7, 8.2, 4.6, and 33.7 mm for E. coli, P. aeruginosa, S. aureus and C. albicans, respectively. The genome sequencing of the JABS6 isolate confirmed that it was identical to Bacillus thuringiensis strain USS‐CAP‐1. The study concludes that this finding shows promise for the further development of future antimicrobial agents.


Keywords


antimicrobial; bacteria; Enggano island; Jaspis sp.; screening

Full Text:

PDF


References

Aboul­Ela HM, Azzam NF, Shreadah MA, Kelly M. 2019. Antimicrobial activities of five bacterial isolates associated with two red sea sponges and their potential against multidrug resistant bacterial pathogens. Egypt. J. Aquat. Biol. Fish. 23(4):551– 340. doi:10.21608/ejabf.2019.57580.

Abubakar H, Wahyudi AT, Yuhana M. 2012. Skrining bak­teri yang berasosiasi dengan spons Jaspis sp. sebagai penghasil senyawa antimikroba. IJMS 16(1):35–40. doi:10.14710/ik.ijms.16.1.35­40.

Asagabaldan MA, Ayuningrum D, Kristina R, Sabdono A, Radjasa OK, Trianto A. 2017. Identification and antibacterial activity of bacteria isolated from maine sponge Haliclona (Reniera) sp. against mul­tidrug resistant human pathogen. IOP Conf. Ser. Earth Environ. Sci. 55:1–11. doi:10.1088/1755­ 3521315/55/1/012019.

Astuti P, Pratiwi SUT, Hertiani T, Alam G, Tahir A, Wahyuono S. 2002. Marine sponge Jaspis sp. a po­tential bioactive natural source against infectious dis­eases. Berkala Ilmu Kedokteran 34(3):135–140.

Bahagiawati. 2002. The use of Bacillus thuringiensis as an bioinectides. J Agrobiogen 5(1):21–28.

Blockley A, Elliott DR, Roberts AP, Sweet M. 2017. Sym­biotic microbes from marine invertebrates: Driving a new era of natural product drug discovery. Diversity 9(4):49. doi:10.3390/d9040049.

Brauner A, Fridman O, Gefen O, Balaban NQ. 2016. Dis­tinguishing between resistance, tolerance and persis­tence to antibiotic treatment. Nat. Rev. Microbiol. 14(5):320–330. doi:10.1038/nrmicro.2016.34.

Bravo A, Likitvivatanavong S, Gill SS, Soberón M. 2011. Bacillus thuringiensis: A story of a successful bioin­secticide. Insect Biochem. Mol. Biol. 41(7):423–431. doi:10.1016/j.ibmb.2011.02.006.

Cheng MM, Tang XL, Sun YT, Song DY, Cheng 372 YJ, Liu H, Li PL, Li GQ. 2020. Biological and chemical diversity of marine sponge­derived microorganisms over the last two decades from 1998 to 2017. Molecules 25(4):853. doi:10.3390/molecules25040853.

Conkling M, Hesp K, Munroe S, Sandoval K, Martens DE, Sipkema D, Wijffels RH, Pomponi SA. 2019. Break­through in marine invertebrate cell culture: Sponge cells divide rapidly in improved nutrient medium. Sci. Rep. 9(1):17321. doi:10.1038/s41598­019­53643­y.

Davis WW, Stout TR. 1971. Disc plate method of microbi­ological antibiotic assay. II. Novel procedure offering improved accuracy. Appl. Microbiol. 22(4):666–670. doi:10.1128/aem.22.4.666­670.1971.

Devi P, Wahidullah S, Rodrigues C, Souza LD. 2010. The sponge­associated bacterium Bacillus licheniformis SAB1: A source of antimicrobial compounds. Mar. Drugs 8(4):1203–1212. doi:10.3390/md8041203.

Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS. 2002. Molecular evidence for a uniform microbial community in sponges from dif­ferent oceans. Appl. Environ. Microbiol. 68(9):4431–4440. doi:10.1128/AEM.68.9.4431­4440.2002.

Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG. 1998. Design and evaluation of useful bacterium­specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64(2):795–799. doi:10.1128/aem.64.2.795­799.1998.

Matobole RM, Van Zyl LJ, Parker­Nance S, Davies­ 402 Coleman MT, Trindade M. 2017. Antibacterial activ­ities of bacteria isolated from the marine sponges Iso­dictya compressa and Higginsia bidentifera collected from Algoa Bay, South Africa. Mar. Drugs 15(2):47. doi:10.3390/md15020047.

Mehbub MF, Lei J, Franco C, Zhang W. 2014. Ma­rine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. doi:10.3390/md12084539.

Müller WEG, Grebenjuk VA, Thakur NL, Thakur AN, Ba­tel R, Krasko A, Müller IM, Breter HJ. 2004. Oxygen­ controlled bacterial growth in the sponge Suberites domuncula: Toward a molecular understanding of the symbiotic relationships between sponge and bac­teria. Appl. Environ. Microbiol. 70(4):2332–2341. doi:10.1128/AEM.70.4.2332­2341.2004.

Murniasih T. 2003. Metabolit sekunder dari spons se­bagai bahan obat­obatan. J. Oseana 28(3):27–33. doi:10.1093/bmb/ldw024.

Pabel CT, Vater J, Wilde C, Franke P, Hofemeister J, Adler B, Bringmann G, Hacker J, Hentschel U. 2003. An­timicrobial activities and matrix­assisted laser desorp­tion/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar. Biotechnol. 5(5):424–434. doi:10.1007/s10126­002­0088­8.

Ratnakomala S, Apriliana P, Fahrurrozi, Lisdiyanti P, Kusharyoto W. 2016. Antibacterial activity of ma­rine actinomycetes from Enggano Island. J. Ilmu­ilmu Hayati 15(3):275–283.

Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP. 2014. The analysis of eight transcriptomes from all Porifera classes reveals surprising genetic complex­ity in sponges. Mol. Biol. Evol. 31(5):1102–1120. doi:10.1093/molbev/msu057.

Sambrook J, Russell DW. 2001. Molecular Cloning a Lab­oratory Manual 3rd Edn. New York: Cold Spring Har­bor Laboratory Pr.

Senoaji G. 2003. Daya dukung lingkungan dan ke­sesuaian lahan dalam pengembangan Pulau Enggano Bengkulu. J. Bumi Lestari 9(2):159–166.

Snyder DS, McIntosh TJ. 2000. The lipopolysaccha­ ride barrier: Correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Biochemistry 39(38):11777–11787. doi:10.1021/bi000810n.

Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge­ associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71(2):295–347. doi:10.1128/mmbr.00040­06.

Trianto A, Radjasa OK, Sabdono A, Muchlissin SI, Afriyanto R, Sulistiowati, Radjasa SK, Crews P, McCauley E. 2019. Exploration culturable bacterial symbionts of sponges from Ternate Is­lands, Indonesia. Biodiversitas 20(3):776–782. doi:10.13057/biodiv/d200323.

Wahyudi AT, Priyanto JA, Maharsiwi W, Astuti RI. 2018. Screening and characterization of sponge­associated bacteria producing bioactive compounds anti­Vibrio sp. Am. J. Biochem. Biotechnol. 14(3):221–229. doi:10.3844/ajbbsp.2018.221.229.

Wahyudi AT, Priyanto JA, Wulandari DR, Astuti RI. 2019. In vitro antibacterial activities of marine sponge­ associated bacteria against pathogenic Vibrio spp. causes vibriosis in shrimps. Int. J. Pharm. Pharm. Sci. p. 33–37. doi:10.22159/ijpps.2019v11i11.34814.

Zampella A, D’Auria M, Debitus C, Menou JL. 2000. New isomalabaricane derivatives from a new species of Jaspis sponge collected at the Vanuatu Islands. J. 471 Nat. Prod. 268(7):943–946.



DOI: https://doi.org/10.22146/ijbiotech.65943

Article Metrics

Abstract views : 2079 | views : 1627

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.