Inhibition of protease activity and anti‐quorum sensing of the potential fraction of ethanolic extract from Sansevieria trifasciata Prain leaves against Pseudomonas aeruginosa

https://doi.org/10.22146/ijbiotech.73649

Whika Febria Dewatisari(1), Laurentius Hartanto Nugroho(2*), Endah Retnaningrum(3), Yekti Asih Purwestri(4)

(1) Doctoral Program of Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia; Biology Study Program, Faculty of Science and Technology, Universitas Terbuka. Jl Cabe Raya, Pondok Cabe, Pamulang, Tangerang Selatan 15418, Indonesia
(2) Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sleman 55281, Yogyakarta, Indonesia
(3) Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sleman 55281, Yogyakarta, Indonesia
(4) Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sleman 55281, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Sansevieria trifasciata is a plant that is commonly utilized in traditional medicine. The leaves of S. trifasciata show antibacterial properties against Pseudomonas aeruginosa. This bacterium is an opportunistic pathogen that can cause serious illness in humans and produce a variety of virulence factors responsible for bacterial pathogenesis with quorum sensing (QS) systems that mediate intracellular communication. Bacteria produce protease through a QS mechanism in which they express signaling molecules to become pathogens. Proteases are extracellular enzymes required for successful infection that mediate biofilm spread through QS and regulate a variety of cellular and physiological functions. This research aimed to evaluate the protease, and anti‐QS activities of the ethanolic extract from S. trifasciata leaves against P. aeruginosa and the expression of QS genes. An azocasein test was used to determine the protease activity in qualitative and quantitative methods. Using real‐time quantitative polymerase chain reaction, a study was conducted to investigate the effect of ethanolic extract from S. trifasciata leaves on selected QS‐regulatory genes at the transcriptional level. The results showed that the potential ethanolic extract from S. trifasciata leaves inhibited the protease enzyme activity by as much as 77.1%. The potential ethanolic extract from S. trifasciata leaves decreased the expressions of lasA, lasB, lasI, lasR, rhlI, and rhlR with 2‐ΔΔCt values of 0.81, 0.93, 0.76, 0.97, 0.90, and 0.55 respectively.


Keywords


Sansevieria trifasciata; Pseudomonas aeruginosa; Protease activity; Anti‐quorum sensing

Full Text:

PDF


References

Andrejko M, Zdybicka­Barabas A, Janczarek M, Cytryńska M. 2013. Three Pseudomonas aeruginosa strains with different protease profiles. Acta Biochim. Pol. 60(1):83–90. doi:10.18388/abp.2013_1955.

Baburam S, Ramasamy S, Shanmugam G, Mathanmohun M. 2022. Quorum Sensing Inhibitory Potential and Molecular Docking Studies of Phyllanthus emblica Phytochemicals Against Pseudomonas aeruginosa. Appl. Biochem. Biotechnol. 194(1):434–444. doi:10.1007/s12010­021­03683­w.

Banerjee M, Moulick S, Bhattacharya KK, Parai D, Chattopadhyay S, Mukherjee SK. 2017. Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microb. Pathog. 113:85–93. doi:10.1016/j.micpath.2017.10.023.

Berame JS, Cuenca SME, Cabilin DRP, Manaban ML. 2017. Preliminary Phytochemical Screening and Toxicity Test of Leaf and Root Parts of the Snake Plant (Sansevieria trifasciata). J. Phylogenetics Evol. Biol. 05(03):1000187. doi:10.4172/2329­9002.1000187.

Calina D, Anca Oana D, Rosu L, Zlatian O, Rosu A, Anghelina F, Rogoveanu O, Arsene A, Nicolae A, Dragoi CM, Tsiaoussis J, Tsatsakis A, Spandidos D, Drakoulis N, Gofita E. 2017. Antimicrobial resistance development following surgical site infections. Molecular Medicine Reports 15:681–688. doi:10.3892/mmr.2016.6034.

Chanda W, Joseph TP, Padhiar AA, Guo X, Min L, Wang W, Lolokote S, Ning A, Cao J, Huang M, Zhong M. 2017. Combined effect of linolenic acid and tobramycin on Pseudomonas aeruginosa biofilm formation and quorum sensing. Exp. Ther. Med. 14(5):4328–4338. doi:10.3892/etm.2017.5110.

Crabbé A, Jensen PØ, Bjarnsholt T, Coenye T. 2019. Antimicrobial Tolerance and Metabolic Adaptations in Microbial Biofilms. Trends Microbiol. 27(10):850– 863. doi:10.1016/j.tim.2019.05.003.

Dewatisari W. 2022. Antibacterial and Anti­biofilmForming Activity of Secondary Metabolites from Sansevieria trifasciata­ Leaves Against Pseudomonas aeruginosa. Indones. J. Pharm. 33(1):100– 109. doi:10.22146/ijp.2815.

Dewatisari WF, Nugroho LH, Retnaningrum E, Purwestri YA. 2021. The potency of Sansevieria trifasciata and s. Cylindrica leaves extracts as an antibacterial against Pseudomonas aeruginosa. Biodiversitas 22(1):408– 415. doi:10.13057/biodiv/d220150.

Elekhnawy E, Negm WA, El­Aasr M, Kamer AA, Alqarni M, Batiha GES, Obaidullah AJ, Fawzy HM. 2022. Histological assessment, anti­quorum sensing, and anti­biofilm activities of Dioon spinulosum extract: In vitro and in vivo approach. Sci. Rep. 12(1):1–15. doi:10.1038/s41598­021­03953­x.

Erhabor CR, Erhabor JO, McGaw LJ. 2019. The potential of South African medicinal plants against microbial biofilm and quorum sensing of foodborne pathogens: A review. South African J. Bot. 126:214– 231. doi:10.1016/j.sajb.2019.07.024.

Gellatly SL, Hancock RE. 2013. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 67(3):159–173. doi:10.1111/2049­632X.12033.

Ha DG, Kuchma SL, O’Toole GA. 2014. Platebased assay for swarming motility in Pseudomonas aeruginosa. Methods Mol. Biol. 1149:67–72. doi:10.1007/978­1­4939­0473­0_8.

Husain FM, Ahmad I, Al­Thubiani AS, Abulreesh HH, AlHazza IM, Aqil F. 2017. Leaf extracts of Mangifera indica L. inhibit quorum sensing ­ Regulated production of virulence factors and biofilm in test bacteria. Front. Microbiol. 8(APR):727. doi:10.3389/fmicb.2017.00727.

Karamova NS, Khabibrakhmanova VR, Abdul­Hafiz IY, Gumerova SK, Kamalova YN, Kovalenko SA, Ibrahim OKM, Orabi MA. 2022. Composition of Biologically Active Substances and Antiradical Activity of Extracts from Five Species of Plants of the Asparagaceae Family. Russ. J. Bioorg. Chem. 48:1422– 1432. doi:10.1134/S1068162022070093.

Karthick Raja Namasivayam S, Angel J, Bharani RS, Nachiyar CV. 2020. Terminalia chebula and Ficus racemosa principles mediated repression of novel drug target Las R – the transcriptional regulator and its controlled virulence factors produced by multiple drug resistant Pseudomonas aeruginosa ­ Biocompatible formulation aga. Microb. Pathog. 148:104412. doi:10.1016/j.micpath.2020.104412.

Kingsley D, Chauhan R, Sinha P, Abraham J. 2013. Screening and characterization of antimicrobial agents from Sanseveria roxburghiana and Sanseveria trifasiata. Asian J. Plant Sci. 12(5):224–227. doi:10.3923/ajps.2013.224.227.

Kose S, Atalay S, Odemis I, Adar P. 2014. Antibiotic Susceptibility of Pseudomonas aeruginosa Strains Isolated from Various Clinical Specimens. ANKEM Derg. 28(3):100–104. doi:10.5222/ankem.2014.100.

Lee J, Zhang L. 2015. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1):26–41. doi:10.1007/s13238­014­0100­x.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real­time quantitative PCR and the 2­∆∆CT method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262.

Lu PL, Morden CW, Manning J. 2014. Phylogenetic relationships among dracaenoid genera (asparagaceae: Nolinoideae) inferred from chloroplast DNA loci. Syst. Bot. 39(1):90–104. doi:10.1600/036364414X678035.

Maisuria VB, Los Santos YLD, Tufenkji N, Déziel E. 2016. Cranberry­derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci. Rep. 6:1–12. doi:10.1038/srep30169.

Moseley SL. 2022. Medical bacteriology. McGraw­Hill Education. doi:10.1036/1097­8542.412700.

Pattnaik SS, Ranganathan SK, Ampasala DR, Syed A, Ameen F, Busi S. 2018. Attenuation of quorum sensing regulated virulence and biofilm development inPseudomonas aeruginosa PAO1 by Diaporthe phaseolorum SSP12. Microb. Pathog. 118:177–189. doi:10.1016/j.micpath.2018.03.031.

Purwestri YA, Kartikasari N, Putri SG, Wilson W, Sembiring L. 2016. Metabolic profiling of endophytic bacteria from Purwoceng (Pimpinella pruatjan Molkend) root and antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. In: AIP Conf. Proc., volume 1744. p. 020063. doi:10.1063/1.4953537.

Rashiya N, Padmini N, Ajilda AAK, Prabakaran P, Durgadevi R, Veera Ravi A, Ghosh S, Sivakumar N, Selvakumar G. 2021. Inhibition of biofilm formation and quorum sensing mediated virulence in Pseudomonas aeruginosa by marine sponge symbiont Brevibacterium casei strain Alu 1. Microb. Pathog. 150:104693. doi:10.1016/j.micpath.2020.104693.

Retnaningrum E, Yossi T, Nur’azizah R, Sapalina F, Kulla PDK. 2020. Characterization of a bacteriocin as biopreservative synthesized by indigenous lactic acid bacteria from dadih soya traditional product used in West Sumatra, Indonesia. Biodiversitas 21(9):4192–4198. doi:10.13057/biodiv/d210933.

Sarabhai S, Sharma P, Capalash N. 2013. Ellagic Acid Derivatives from Terminalia chebula Retz. Downregulate the Expression of Quorum Sensing Genes to Attenuate Pseudomonas aeruginosa PAO1 Virulence. PLOS ONE 8(1):1–12. doi:10.1371/journal.pone.0053441.

Sathiya Deepika M, Thangam R, Sakthidhasan P, Arun S, Sivasubramanian S, Thirumurugan R. 2018. Combined effect of a natural flavonoid rutin from Citrus sinensis and conventional antibiotic gentamicin on Pseudomonas aeruginosa biofilm formation. Food Control 90:282–294. doi:10.1016/j.foodcont.2018.02.044.

Umoh OT, Edet VN, Uyoh VE. 2020. Comparative Analysis of the Phytochemical Contents of Dry and Fresh Leaves of Sansevieria trifasciata Prain. Asian J. Res. Bot. 3(1):41–47.

Vijayaraghavan P, Gnana S, Vincent P. 2013. A simple method for the detection of protease activity on agar plates using bromocresolgreen dye. J. Biochem. Tech. 4(3):628–630.

Yarmolinsky L, Bronstein M, Gorelick J. 2015. Review: Inhibition of bacterial quorum sensing by plant extracts. Isr. J. Plant Sci. 62(4):294–297. doi:10.1080/07929978.2015.1067076.

Yin L, Zhang Y, Azi F, Zhou J, Liu X, Dai Y, Wang Z, Dong M, Xia X. 2022. Inhibition of biofilm formation and quorum sensing by soy isoflavones in Pseudomonas aeruginosa. Food Control 133:108629. doi:10.1016/j.foodcont.2021.108629.

Yumna M, Angelina, Abdullah, Arbianti R, Utami TS, Hermansyah H. 2018. Effect of mother­inlaw’s tongue leaves (Sansevieria trifasciata) extract’s solvent polarity on anti­diabetic activity through in vitro α­glucosidase enzyme inhibition test. In: E3S Web Conf., volume 67. p. 0–4. doi:10.1051/e3sconf/20186703003

Andrejko M, Zdybicka­Barabas A, Janczarek M,
Cytryńska M. 2013. Three Pseudomonas aeruginosa
strains with different protease profiles. Acta Biochim.
Pol. 60(1):83–90. doi:10.18388/abp.2013_1955.
Baburam S, Ramasamy S, Shanmugam G, Mathanmohun M. 2022. Quorum Sensing Inhibitory Potential
and Molecular Docking Studies of Phyllanthus emblica Phytochemicals Against Pseudomonas aeruginosa. Appl. Biochem. Biotechnol. 194(1):434–444.
doi:10.1007/s12010­021­03683­w.
Banerjee M, Moulick S, Bhattacharya KK, Parai D, Chattopadhyay S, Mukherjee SK. 2017. Attenuation
of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microb. Pathog. 113:85–93.
doi:10.1016/j.micpath.2017.10.023.
Berame JS, Cuenca SME, Cabilin DRP, Manaban ML.
2017. Preliminary Phytochemical Screening and Toxicity Test of Leaf and Root Parts of the Snake Plant
(Sansevieria trifasciata). J. Phylogenetics Evol. Biol.
05(03):1000187. doi:10.4172/2329­9002.1000187.
Calina D, Anca Oana D, Rosu L, Zlatian O, Rosu A,
Anghelina F, Rogoveanu O, Arsene A, Nicolae A,
Dragoi CM, Tsiaoussis J, Tsatsakis A, Spandidos D,
Drakoulis N, Gofita E. 2017. Antimicrobial resistance development following surgical site infections. Molecular Medicine Reports 15:681–688.
doi:10.3892/mmr.2016.6034.
Chanda W, Joseph TP, Padhiar AA, Guo X, Min L,
Wang W, Lolokote S, Ning A, Cao J, Huang M,
Zhong M. 2017. Combined effect of linolenic acid
and tobramycin on Pseudomonas aeruginosa biofilm
formation and quorum sensing. Exp. Ther. Med.
14(5):4328–4338. doi:10.3892/etm.2017.5110.
Crabbé A, Jensen PØ, Bjarnsholt T, Coenye T. 2019. Antimicrobial Tolerance and Metabolic Adaptations in
Microbial Biofilms. Trends Microbiol. 27(10):850–
863. doi:10.1016/j.tim.2019.05.003.
Dewatisari W. 2022. Antibacterial and Anti­biofilmForming Activity of Secondary Metabolites from
Sansevieria trifasciata­ Leaves Against Pseudomonas aeruginosa. Indones. J. Pharm. 33(1):100–
109. doi:10.22146/ijp.2815.
Dewatisari WF, Nugroho LH, Retnaningrum E, Purwestri
YA. 2021. The potency of Sansevieria trifasciata and
s. Cylindrica leaves extracts as an antibacterial against
Pseudomonas aeruginosa. Biodiversitas 22(1):408–
415. doi:10.13057/biodiv/d220150.
Elekhnawy E, Negm WA, El­Aasr M, Kamer AA, Alqarni
M, Batiha GES, Obaidullah AJ, Fawzy HM. 2022.
Histological assessment, anti­quorum sensing, and
anti­biofilm activities of Dioon spinulosum extract:
In vitro and in vivo approach. Sci. Rep. 12(1):1–15.
doi:10.1038/s41598­021­03953­x.
Erhabor CR, Erhabor JO, McGaw LJ. 2019. The potential of South African medicinal plants against microbial biofilm and quorum sensing of foodborne
pathogens: A review. South African J. Bot. 126:214–
231. doi:10.1016/j.sajb.2019.07.024.
Gellatly SL, Hancock RE. 2013. Pseudomonasaeruginosa: New insights into pathogenesisand host defenses. Pathog. Dis. 67(3):159–173.doi:10.1111/2049­632X.12033.Ha DG, Kuchma SL, O’Toole GA. 2014. Platebased assay for swarming motility in Pseudomonasaeruginosa. Methods Mol. Biol. 1149:67–72.doi:10.1007/978­1­4939­0473­0_8.Husain FM, Ahmad I, Al­Thubiani AS, Abulreesh HH,AlHazza IM, Aqil F. 2017. Leaf extracts ofMangifera indica L. inhibit quorum sensing ­ Regulated production of virulence factors and biofilm
in test bacteria. Front. Microbiol. 8(APR):727.
doi:10.3389/fmicb.2017.00727.
Karamova NS, Khabibrakhmanova VR, Abdul­Hafiz
IY, Gumerova SK, Kamalova YN, Kovalenko SA,
Ibrahim OKM, Orabi MA. 2022. Composition of Biologically Active Substances and Antiradical Activity of Extracts from Five Species of Plants of the Asparagaceae Family. Russ. J. Bioorg. Chem. 48:1422–
1432. doi:10.1134/S1068162022070093.
Karthick Raja Namasivayam S, Angel J, Bharani RS,
Nachiyar CV. 2020. Terminalia chebula and Fi



DOI: https://doi.org/10.22146/ijbiotech.73649

Article Metrics

Abstract views : 1038 | views : 1083

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.